
Code review process analysis

in the Xen Project

Executive Summary

October 19, 2015



AUTHORS Daniel Izquierdo Cortázar
Chief Data O�cer
dizquierdo@bitergia.com

Jesús González Barahona
Chief Science O�cer
jgb@bitergia.com

Some rights reserved. This presentation is distributed under the
“Attribution-ShareAlike 3.0” license, by Creative Commons, available at

http://creativecommons.org/licenses/by-sa/3.0/

1

http://creativecommons.org/licenses/by-sa/3.0/


Objectives of the analysis

Code review in the Xen project is performed in the developers mailing list.
During the last years, it had been observed an apparent increase in the num-
ber of messages devoted to code review, and in particular, an increase in the
number of code review messages per patch serie or individual patch. The
main objective of this analysis is to verify or not this apparent increase, to
study other parameters of the code review process to determine if it is dete-
riorating in some way, and to pinpoint the main causes of this deterioration,
if any.

This report summarizes the first stage of the analysis, and proposes some
lines for a second stage.

Key findings

Time-to-merge is under control
Time to merge increased from 2012 to the first semester of 2014. Dur-
ing the first semester of 2012, 75% of the patch series were merged in
less than 15 days, while in 2014 the same percentage was merged in
less than 30 days. But since then, the time to merge has decreased,
being of about 28 days in the second semester of 2014, and 20 in 2015
(for 75% of patch series, in both cases).

The trend of time-to-merge is similar despite the size of the patch series

The same trend of time to merge (increasing until early 2014, de-
creasing afterwords) is observed for patch series composed of one, two,
three, four or more than four patches. Although there are some di↵er-
ences in the intensity of increase and decrease, all these populations
show similar trends.

2

Lars Kurth


Lars Kurth


Lars Kurth


Lars Kurth


Lars Kurth


Lars Kurth




Methodology

This report aims at providing insights about the code review process in the
Xen project. As the process takes place through a mailing list, a tool and
some specific scripts have been developed for analyzing it. The approach
followed has been:

• Retrieve the mailing list archives, and organize their contents in an
SQL database. For this step, the MLStats tool1 has been used.

• Retrieve the git repository for the project, and organize its metadata
in an SQL database. For this step, the CVSAnalY tool2 has been used.

• Analyze both databases using some Python scripts, producing some
new tables with the relevant events and relationships. The data from
the mailing lists was used to identify code review processes for patch
series, and specific information in the messages was used for tracking
specific events in the code review process, such as submission of a new
version of a patch series. The data from the git repository was used
to determine the commits corresponding to patch series that landed in
the code base. Some heuristics were used to link code review messages
with their related commits.

• Produce a IPython / Jupyter Notebook with the analysis of the events
tables, to obtain evidence that allows to answer the relevant questions.

After the analysis of the database, and the use of heuristics for matching
commits to patches, Table 1 shows: the number of patches identified in the
mailing list, the number of commits identified in the git repository, and the
number of commits linked to one patch in the mailing list.

1
http://metricsgrimoire.github.io/MailingListStats/

2
http://metricsgrimoire.github.io/CVSAnalY/

3

http://metricsgrimoire.github.io/MailingListStats/
http://metricsgrimoire.github.io/CVSAnalY/


Year Number of patches Number of commits Commits corresponding to patch

2011 1,559 2,181 581
2012 1,907 2,296 954
2013 2,345 2,503 1,396
2014 2,035 2,332 1,315
2015 2,060 2,204 1,244

Table 1: Number of patches, commits and commits corresponding to patches
identified in this study (matched commits)

Of these numbers, commits in the git repository is the most reliable, since
it is only a matter of counting. For the number of patches, we have relied on
messages with subject starting with “PATCH”, and used some heuristics to
identify small variances in the subject as corresponding to the same patch.
This means that the number could not be completely accurate. For matching
commits to patches, we used simple heuristics based on matching the subject
line of messages to the first line of the commit message.

In any case, the number of patches identified is close enough (70%-90%
during the years of interest) to the number of commits for the results to
be meaningful. The number of matched commits is smaller, being for the
years 2013-2015 in the range 55%-65%. Assuming the sample of matched
commits is not heavily biased, the results seem representative enough to
draw conclusions.

4

Lars Kurth


Lars Kurth


Lars Kurth


Lars Kurth


Should not be too biased, given we were looking at data that does not
require good matching (such as the backlog)

BUT: backlog data is incomplete

Note that we did not want to focus on getting perfect matching first,
but get a sense of where the issues were.



Results

This analysis was triggered by some observations that the interactions in the
mailing list for Xen code review were increasing during the last years. This
could be signaling that the review process was requiring more resources,
and that individual code reviews were taking longer until merging in the
code base was decided. It could happen as well that some bottlenecks had
emerged, causing the project to be less e�cient when merging new function-
ality and resolving issues.

The analysis has focused on:

• Validating the initial observation of an increase in messages per patch
series reviewed.

• Looking for evidences of a degraded code review process, in terms of
more versions of the patch series being required to accept them, or in
longer review processes.

• Characterizing the patch series under review, to learn about how they
are growing (or not) in complexity and size, and how this could be
influencing the previous parameters.

Validation: Messages per patch series

The analysis has verified that the number of messages per reviewed patch
series has been increasing steadily during the last years (see figure 1). In
the period 2012 to 2015, the median of messages per patch series has grown
from around 2 to about 4. This means that half of the patch series were
reviewed with 1 or 2 messages in 2012, while it required between 1 and 4
messages (or even 5) during 2014 and 2015.

The mean number of messages per patch series has increased even more,
which given the behavior of the median, means that the dispersion of the

5

Lars Kurth




number of messages per patch series is growing quickly. In other words, a
small fraction of reviews are needing many more than those 1-4 messages
needed for half the reviews.

Figure 1: Code review messages per patch series.

This observation, resulting form the analysis of all the code review
threads in the mailing list, is consistent with the initial observation that
lead to this study.

Characterization of patch series

The analysis has characterized the reviewed patch series from several points
of view. The most relevant of those has been finding the number of patches
composing a patch series. Figure 2 shows the evolution of the size of patch
series (in number of patches) over time. It shows how at least 50% of the
patch series were composed by just one patch (median), while the mean
number of patches per patch series has grown from 1.5 in 2012 to about
2.5 in 2015. This means that the dispersion of patches per patch series has
increased during this period.

6

Lars Kurth


Lars Kurth


Lars Kurth


Lars Kurth
Note that multiple explanations are possible:
a) higher demands on quality
b) more arguing / knit-picking
c) more low quality contributions
...



Figure 2: Mean and median number of patches per patch series for each
month. Median is constantly at 1.0, in the bottom part of the chart.

The chart in Figure 3 sheds some more light on the matter of the size
of the patch series. In it, the total population of patch series has been
split in five populations, according to the number of patches they include
(one, two, three, four or more than four). From this chart, it can be seen
how most of the patch series are clearly those composed of one patch. The
next relevant population is that with four patches or more, which has been
growing steadily since 2012. The other populations (two, three, four patches)
are not very relevant.

Therefore, for analyzing how di↵erent patch series sizes (according to
the number of patches) a↵ect the duration of the review process, the most
relevant will be those composed by one or by more than four patches.

7

Lars Kurth


Lars Kurth


Lars Kurth


Lars Kurth


Lars Kurth
Patch series are getting larger
An indicator of higher complexity



Figure 3: Number of patch sets with one, two, three, four, and five or more
patches over time (per month).

The chart in Figure 4 shows the evolution over time of the number of files
touched per patch series. This was considered at some point to be a possible
cause for a longer duration of review processes, due to increased complexity
of the patch series. But the chart shows how in the period 2010-2015, the
mean and median number of files per patch series has remained relatively
constant (median between 1 and 3, for example). Therefore, during the
studied period, this parameter has not changed meaningfully.

Figure 4: Number files touched per patch series over time (per month).

8

Lars Kurth


Lars Kurth


Lars Kurth
I think we may see some skew here: some of the larger and more complex series in 2014/15 were from non-native speakers and new devs, which may have been filtered out!



Duration of review processes

For evaluating the duration of the review processes associated with patch
series, two parameters have been studied with detail:

• Time-to-merge. Time from the submission of the first version of the
patch series to the merge in the code base of the corresponding com-
mits.

• Number of versions until merge. Number of versions that are sent to
the mailing list until the corresponding commits are merged in the
code base.

The first parameter gives an indication of how long, in time, is it taking
from the proposal of a change to the code, until that change actually lands
in the code. The second gives an indication of how many “rounds” (working
to produce a patch version, reviewing it) it takes until a change is approved.
Both parameters have been calculated only for patch series that got merged
(that is, approved patch series).

Time to merge

The analysis has devoted most of the attention to time-to-merge, since this
is usually the most relevant parameter, and the one that is to be minimized.
Figure 5 shows its evolution per year, for all patch series for which final
commits were identified.

The representation of the data in this figure is based on boxplots, which
sketch the distribution of the data by representing the border values after
splitting the samples in four quarters. Each of the regions delimited by the
boxes represent one of these quarters of the total population. The region
below the blue box shows the behavior of up to the 25% of the population
(the 25% percentile), the red line represents the median (50% percentile),
and the top of the blue box delimits 75% of the population. Over that top
blue line, the last 25% of the population is represented.

With this interpretation in mind, we can see a constant increase in the
time to merge from 2012 to 2014. This is highly visible by following the 75%
percentile of the distribution. In 2012 75% of the patch series were merged in
less than 20 days, while in 2014 the time for merging that 75% increased up
to 30 days. This trend is noticeable as well in the median values. However,
2015 shows a change in trend, with the values coming back close to those of
2012.

9

Lars Kurth


Lars Kurth


Lars Kurth


Lars Kurth


Lars Kurth


Lars Kurth


Lars Kurth


Lars Kurth




Figure 5: Time to merge a patch series into the git repository, per year.

There are two e↵ects that could influence these numbers. One is the
aggregation over periods so large like years, which could mask trends over
shorter periods. The other one is that for 2015, still many of the review
processes that are going to accepted are still running. This latter e↵ect
means that the final number for 2015, once all the patch series initiated this
year are accepted, can be di↵erent, probably longer, than the number that
can be calculated now.

To avoid both problems, periods of 6 months were analyzed as well. For
the last of these periods, the first semester of 2015, most of the accepted
patch series were already finished during the period of study (which ends in
early October), thus minimizing the e↵ect of patch series not yet merged,
but which will be merged at some point.

Figure 6 shows this semester-split version of the same dataset. It shows a
continuous increase in the time to merge from the first semester of 2012 until
the first semester of 2014. The second semester of 2014 shows a change in
the trend, with time to merge starting to decrease, until it is in 2015 similar
to the second semester of 2012.

10

Lars Kurth




Figure 6: Time to merge a patch series into the git repository, per semester

To study the e↵ect of patch series size (by number of patches), Figure 7
shows the behavior of one-patch patch series, while Figure 8 shows it for
patch series with five or more patches.

The one-patch patch series show a stable trend in median values, al-
though a certain increase in time to merge is observed until the second
semester of 2014. After that period, time to merge decreases to levels of
2012 during the first semester of 2015. The patch series with more than
four patches shows a similar trend, but with longer values during 2014. It
also shows longer time to merge, topping at more than 100 days for the 75%
percentile during the second semester of 2014.

Figure 7: Time to merge split by semester for one-patch patch series, per
semester.

11



Figure 8: Time to merge split by semester for patch series with five or more
patches, per semester.

Iterations per review process

To complete the analysis on duration of code review processes, the number
of iterations (patch versions) per code review process was calculated as well.
Figure 9 shows the evolution of the mean and median of this parameter,
per month. During all the studied period the median remained stable at
1 iteration per review process, meaning that at least 50% of the reviews
required only one patch version. However, the mean has been growing, to
peak during 2014. This is an indication of a larger spread of the number of
iterations, and that some review processes took a larger number of iterations
to complete. But even this parameter has started to decrease during the first
semester of 2015, staying at about 1.4 iterations per review process.

12



Figure 9: Iterations (number of versions) per accepted patch series over time
(per month). Median is steady at 1.0, in the bottom of the chart.

13



Duration: summary

As a summary of the previous observations, it can be said that the duration
of the review process in Xen became longer in the period 2012-2014, but
since then it has been controlled, and even decreasing. The data for 2015 is
still not complete, and could change due to the e↵ect of reviews still being
processed, but for now it shows not only a contention in the duration, but
a decrease, both in terms of time-to-merge and of iterations.

14



References and future work

References with further information, and elements to reproduce the analysis:

• IPython Notebook with more detailed data:
https://github.com/dicortazar/ipython-notebooks/blob/master/

projects/xen-analysis/Code-Review-Metrics.ipynb

• Database:
http://projects.bitergia.com/xen-reports/xen_reports3.7z

• Script to produce database:
https://github.com/dicortazar/ipython-notebooks/blob/master/

projects/xen-analysis/xen_patches.py

The current report is the finalization of the first stage of analysis. A
second stage could be started afterwards. Some lines for future work during
this second stage are:

Deployment and automatic update
Currently, the IPython/Jupyter Notebook can be updated automati-
cally from new versions of the review database. The process of gen-
erating this database from CVSAnalY and MLStats database can be
automated. Since both CVSAnalY and MLStats databases are already
being updated frequently, this will ensure that the code review stats
are updated with the same frequency.

Improvement of the matching algorithm
Some of the most interesting parameters, such as time-to-merge, de-
pend on the correct matching of threads in the mailing list to commits
in the git repository. The current heuristics are matching about 60%
of the commits. This figure could be improved significantly.

15

https://github.com/dicortazar/ipython-notebooks/blob/master/projects/xen-analysis/Code-Review-Metrics.ipynb
https://github.com/dicortazar/ipython-notebooks/blob/master/projects/xen-analysis/Code-Review-Metrics.ipynb
http://projects.bitergia.com/xen-reports/xen_reports3.7z
https://github.com/dicortazar/ipython-notebooks/blob/master/projects/xen-analysis/xen_patches.py
https://github.com/dicortazar/ipython-notebooks/blob/master/projects/xen-analysis/xen_patches.py


Analysis of the backlog over time
The current analysis (see the Notebook) includes some preliminary
analysis of the backlog of pending code reviews. However, for this
analysis to be useful, it should more clearly di↵erentiate between su-
perseded, abandoned, and still alive code reviews, and should provide
data about the evolution over time, the age structure of pending re-
views, etc.

Production of JSON documents with detailed information
JSON documents with relevant parameters per review can be pro-
duced. Using those documents, further tooling can be produced with
relative easy, which allows to easily detect reviews inactive for long
periods, reviews with long review processes, etc.

Website with drill down information about code review activity
All of this information, once curated and automatically updated, could
be provided into a website where any interested person could check
all of these data with drill down information per path serie, activity
timeframe, developers, and other parameters.

16


