
2012/6/27 1

Xen vMCE Design

Liu, Jinsong <jinsong.liu@intel.com>

Jiang, Yunhong <yunhong.jiang@intel.com>

Auld, Will <will.auld@intel.com>

Host MCE

Xen MCE Architecture

HW

dom0 domU User space tools (FMA/mcelog)

mcelog
interface

MCE Softirq MCE ISR

PV Guest
MCE

vMCE

Reset
system

hvm MCE
injection

pv MCE
injection

vIRQ

cpu offline

page offline

Recover action

#GP VMExit

MSR
telemetry

HC

HVM Guest
MCE

CPU

Xen

MCE#

We are here

2012/6/27 2

2012/6/27 3

Background

• Xen mce components
 Xen MCE ISR
 Xen MCE softirq
 vMCE
 Dom0 mcelog interface

• 3 major points of vMCE logic
 How to inject MCE
 How to emulate MSRs
 How to live migrate

• Major constraints of current vMCE
 Bound to host

• Host heterogeneous break migration, cannot control via cpuid
• Non-arch issues of MSRs emulation

 Weird per-domain MSRs
 Unnatural MCE injection semantics

2012/6/27 4

Xen vMCE approach (1)

• Separate guest MCE w/ host MCE
 Unlike cpuid

• vMCE can fake capabilities to guest if need
• vMCE can mask capabilities if unnecessary

 Emulate a well-defined MCE interface to
guest, consists of

• Init&probe interace
• Basically for guest init & probe
• disable UCR-unrelated capabilities

– Pointless to inject those error to guest

• enable UCR-related capabilities
– No matter host support or not

• disable MCG_CTL, stick all 1’s for MCi_CTL
– Generally for h/w debug purpose
– Avoid model specific issue

• Error-info interface
• Only meaningful when real error generated
• Filter & deliver to guest on demand

 Leave host flexibility

• Error inject to guest
 A transfer layer

• Filter non-SRAO/SRAR banks
• Translate host address to guest address
• Deliver

• Evaluate and deliver the most severe error

Guest MCE

Host MCE

Guest MSRs

Host MSRs

Transfer layer

pv/hvm
MCE

injection

VMExit
GP#

CAP & CTL
MSRs

x

Error-info
interface

Init&probe
interface

2012/6/27 5

Xen vMCE approach (2)

• MSRs emulation
 Pure s/w emulation
 No non-arch issues again

• For family-model issue root from legacy processor
• Don’t care
• Guest probe mce capabilities via MCG_CAP, not cpuid

• For model-specific issue
• For MCi_CTL, stick to all 1’s and treat guest write bit as ‘not implement’
• For MSCOD of MCi_STATUS, expose all 0’s

• vMCE live migration
 Error-info MSRs:

• pointless to be migrated
 Init&probe MSRs:

• save/restore MCG_CAP, for the sake of future cap extension
• save/restore MCi_CTL2

• MCE injection
 Broadcast to all vcpus
 Corner case

• vcpus > pcpus, injection occur at a long time window
• Tolerate it

2012/6/27 6

Details

2012/6/27 7

Point 1: MSR emulation (1)

MCG_CAP
capabilities

Description Defined
interface
for guest

Count field CPU bank number 0000,0010

MCG_CTL_P disable MCG_CTL
when clear

0

MCG_EXT_P extended regs 0

MCG_CMCI_P CMCI 1

MCG_TES_P MCi_status
bit56:53 are arch

when set

1

MCG_EXT_CNT meaningful when
MCG_EXT_P set

0000,0000

MCG_SER_P support s/w error
recovery

1

• Init&probe interface:
 MCG_CAP

 Read-only, emulated as ‘write not changes’ since
write effect is undefined

 Disable UCR-unrelated cap (0)
 MCG_CTL_P=0 to disable MCG_CTL
 MCG_EXT_P=0, no ext regs, rdmsr/wrmsr for

180H-185H/188H-197H cause GP#
 Enable UCR-related cap (1)

• Enable MCG_TES_P to avoid model specific
• Enable MCG_SER_P to support s/w recovery
• Enable MCG_CMCI_P for sake of performance
• Emulate 2 banks to guest

• Bank0 to walk around old ‘bank0 quirk’,
while bank1 to log most severe error

• Migration would not blocked
• If really 2 physical error occur at 1

MCE#, hypervisor would crash;

 MCG_CTL: disabled via MCG_CTL_P=0
 MCi_CTL

 Stick all 1’s, avoid model specific issues
 Natively most MCi_CTL bits are ‘not

implement’. Processor does not write changes
to bits that are not implements

 MCi_CTL bits are usually for h/w debug
purpose, os normally set them all 1’s.

 If guest crazy clear any bit, just treat the bit
as ‘not implement’. Guest would not surprise.

 MCi_CTL2
 Set CMCI_EN and error count threshold
 Never inject CMCI to guest, just to avoid guest’s

periodic polling
 Save/restore when migrate

2012/6/27 8

Point 1: MSR emulation (2)

• Error-info interface
 A transfer layer

• Filter non-SRAO/SRAR banks

• Translate host address to guest address

• Deliver:
• Evaluate and deliver the most severe error to vcpu0

 MCG_STATUS
• Bit63:3 reserved, wrmsr should be same as rdmsr otherwise GP#

 MCi_STATUS
• Clear by writing 0s, writing 1s causes GP#

 MCi_ADDR/MCi_MISC
• Emulated as always implemented (no rdmsr/wrmsr GP# issue),

ADDRV/MISCV=0 means no addr/info

• Clear by writing 0s, writing 1s causes GP#

• Translate host address to guest address

2012/6/27 9

Point 1: MSR emulation (3)

• No non-arch issues again
 For family-model issues root from legacy processors

• Don’t care, guest would not surprise

• Guest probe mce capabilities via MCG_CAP, not cpuid

 For model-specific issues
• 2 model-specific fields

• MCG_CTL/MCi_CTL

• MCi_STATUS – MSCOD model specific error code

• For MCG_CTL/MCi_CTL
• For MCG_CTL, disable it via MCG_CTL_P = 0

• For MCi_CTL
– Stick all 1’s

– If guest crazy write bit to 0, treat it as ‘not implement’ bit and simply ignore write

• For MCi_STATUS ‘MSCOD’ model specific error code
• Stick all 0’s to guest

2012/6/27 10

Point 2: live migration

• live migration issue:
 if migrate from A (large bank) to B (small bank)

• will GP# at B when access MCi_CTL
• Jan’s patch partly solve problem by save/restore MCG_CAP, avoid GP#
• But B can only r/w some MCi_CTL after migrate

• approach:
 For error-info MSRs

• pointless to be migrated

 For init&probe MSRs
• For MCG_CAP

• 2 banks, no GP# problem caused by bank number
• Still save/restore when migrate, considering future CAP extension
• command line option to allow admin to restrict the common CAP set among machine pool

• For MCi_CTL2
• Save/restore when migrate, set by guest so keep same to guest before/after migration

• For MCG_CTL/MCi_CTL, unified at all platform
• MCG_CTL disabled
• MCi_CTL stick to all 1’s

 Corner case: live migration while vMCE occur
• abort migration
• notify tools so that it got abort status & reason

2012/6/27 11

Point 3: MCE injection

• Inject vMCE to all vcpus
 Any risk when vcpus > pcpus, and injections occur at a long

time window?
• For win8, test indicate ok

• For linux, it can tolerate this case (Tony Luck)

• For Solaris, it can tolerate this case (Ashok)

• Concern: hypervisor should be guest agnostic

 Approach for vcpus > pcpus
• Tolerate it

• Worst case is guest kill itself

2012/6/27 12

Backup

2012/6/27 13

MCE MSRs

MCG_CAP

MCG_CTL

MCG_STATUS

MCi_CTL2

MCi_STATUS

MCi_ADDR

MCi_MISC

global per-bank

per-cpu

Init&probe
MSRs *

Error-info MSRs
*

MCi_CTL

Xen RAS status
Item Status Comments

MCA infrastructure supported Move from dom0 to hypervisor

CE and UCNA supported Userspace tools logging and analysis

Uncore error recovery supported Memory scrubbing error
L3 explicit write-back error

Core error recovery supported Data load error
Instruction fetch error

APEI BERT WAIT Dom0 own, wait kernel ready

APEI ERST supported Dom0 and hypervisor co-work

APEI EINJ supported Dom0 own

APEI HEST/GHES N/A Dom0 and hypervisor co-work

Dom0 Xen RAS interface WIP mcelog, cpu online/offline done;
cpu hotadd, memory hotadd ongoing

2012/6/27 14

