
1FreeBSD Journal • November/December 2024

1 of 7

The Xen Hypervisor began at the University of Cambridge Computer Laboratory in 
the late 1990s under the project name Xenoservers. At that time, Xenoservers aimed 
to provide “a new distributed computing paradigm, termed ‘global public computing,’ 

which would allow any user to run any code anywhere. Such platforms price computing re-
sources, and ultimately charge users for resources consumed”.

Using a hypervisor allows for sharing the hardware resources of a physical machine 
among several OSes in a secure way. The hypervisor is the piece of software that manages 
all those OSes (usually called guests or virtual machines) and provides separation and isola-
tion between them. First released in 2003 as an open-source hypervisor under the GPLv2, 
Xen’s design is OS agnostic, which makes it easy to add Xen support into new OSes. Since its 
first release more than 20 years ago, Xen has received broad support from a large commu-
nity of individual developers and corporate contributors.

The Architecture
Hypervisors can be divided into two categories:
•	Type 1: those that run directly on bare metal and are in direct control of the hardware.
•	Type 2: hypervisors that are part of an operating system.
Common Type 1 hypervisors are VMware ESX/ESXi and Microsoft Hyper-V, while VM-

ware Workstation and VirtualBox are clear examples of Type 2 hypervisors. Xen is a Type 1 
hypervisor with a twist — its design resembles a microkernel in many ways. Xen itself only 
takes control of the CPUs, the local and IO APICs, the MMU, the IOMMU, and a timer. The 
rest is taken care of by the control domain (Dom0), a specialized guest granted elevated 
privileges by the hypervisor. This allows Dom0 to manage all other hardware in the system, 
as well as all other guests running on the hypervisor. It is also important to realize that Xen 
contains almost no hardware drivers, preventing code duplication with the drivers already 
present in OSes.
Architecture

Dom0 

Kernel

XEN Toolstack

SATA Driver

XEN

Hardware

GFX Driver

Dom1 Dom2 DomN 

BY ROGER PAUL MONNÉ

Xen  
	 and FreeBSD



2FreeBSD Journal • November/December 2024

When Xen was initially designed there were no hardware virtualization extensions on x86; 
options for virtualization either involved full software emulation or binary translation. Both 
options are very expensive in terms of performance, so Xen took a different approach. In-
stead of intending to emulate the current x86 interfaces, a new interface was provided to 
guests. The purpose of such a new interface was to avoid the overhead of having to deal 
with the emulation of hardware interfaces in the hypervisor and, instead, use a new inter-
face between the guest and Xen that’s more natural to implement for both. This virtualiza-
tion approach is also known as Ring Deprivileging.

However, this requires the guest to be aware it’s running under Xen, and to use a differ-
ent set of interfaces compared to running natively. That set of interfaces was designated as 
ParaVirtualized, and hence the guests that used those interfaces were usually referred to as 
PV guests. The following interfaces are replaced with PV equivalents on PV guests:

•	Disk and network.
•	Interrupts and timers.
•	Kernel entry point.
•	Page tables.
•	Privileged instructions.
The main limitation with such an approach is that it requires extensive changes to core 

parts of the guests kernel OSes. Currently, the only OSes that still have x86 Xen PV support 
are Linux and NetBSD. There was an initial port of Windows to run as a PV guest that was 
never published, plus Solaris also had PV support.

With the addition of hardware virtualization exten-
sions to x86 CPUs, Xen also gained support to run un-
modified (non-PV) guests. Such guests rely on the 
usage of hardware virtualization plus emulation of 
hardware devices. On a Xen system, such emulation is 
either done by the hypervisor itself (for performance 
critical devices) or offloaded to an external emulator 
running in user-space by default QEMU. This hardware 
virtualized guests that emulates a full PC-compliant 
environment is called HVM in Xen terminology.

So now we have gone over two very different types 
of guests, on one side we have PV guests that use PV interfaces to avoid emulation, and on 
the other side, we have HVM guests that rely on hardware support and software emulation 
in order to run unmodified guests.

Emulated IO devices used by HVM guests, such as disks or network cards, don’t perform 
very well due to the amount of logic required to handle data transfers and the overhead of 
emulating legacy interfaces. To avoid this penalty, Xen HVM guests also get the option to 
use PV interfaces for IO. Some other PV interfaces are available to HVM guests (like a one-
shot PV timer) to reduce the possible overhead of using emulated devices.

While HVM allows every possible unmodified x86 guest to run, it also has a wide attack 
surface due to emulating all devices required for a PC compatible environment. To reduce 
the amount of interfaces (and thus the surface of attack) exposed to guests, a slightly mod-
ified version of HVM guests was created, named PVH. This is a slimmed down version of 
HVM, where a lot of emulated devices that would be present on HVM guests are not avail-
able. For example, a PVH guests only gets an emulated local APIC and maybe an emulat-

2 of 7

Instead of intending to 
emulate the current x86 
interfaces, a new interface 
was provided to guests.



  

3FreeBSD Journal • November/December 2024

ed IO APIC, but there’s no emulated HPET, PIT or legacy PIC (8259). PVH mode, however, 
might require modifications in the guest OS kernel so it’s aware it’s running under Xen and 
some devices are not available. PVH mode also uses a specific kernel entry point that allows 
direct booting into the guest kernel, without relying on an emulated firmware (SeaBIOS or 
OVMF), thus greatly speeding up the boot process. Note, however, OVMF can also be run in 
PVH mode to chain load OS-specific bootloaders when startup speed is not of great con-
cern and ease of use is preferred. See the table below for a brief comparison of the different 
guest modes on x86.

PV PVH HVM
I/O devices PV (xenbus) PV (xenbus) emulated + PV
Legacy devices NO NO YES
Privileged instructions PV hardware virtualized hardware virtualized
System configuration PV (xenbus) ACPI + PV (xenbus) ACPI + PV (xenbus)
Kernel entry point PV PV + native* native
* It’s possible for PVH guests to re-use the native entry point when booted with firmware, but that requires adding logic to the native entry point to detect 
when booting in a PVH environment. Not all OSes support this.

The PVH approach has also been adopted by other virtualization technologies like Fire-
cracker from AWS. While Firecracker is based on KVM, it re-uses the Linux Xen PVH entry 
point and applies the same attack surface reduction by not exposing (and thus emulating) 
legacy x86 devices.

Speaking about ARM architecture, the fact that the Xen port was developed once ARM 
already had support for hardware virtualization extensions led to a different approach when 
compared to x86. ARM has only one guest type, and it would be the equivalent of PVH on 
x86. The focus is also to attempt to not expose an excess of emulated devices to reduce the 
complexity and the attack surface.

It’s quite likely that the upcoming RISC-V and PowerPC ports will take the same ap-
proach of supporting only one guest type, more akin to HVM or PVH on x86. Those plat-
forms also have hardware virtualization extensions that forego the need for something like 
classic PV support.

Usage and Unique Features
The first commercial uses of Xen were strictly focused on server virtualization, either on 

premise usage of Xen-based products or through cloud offerings. However, due to its versa-
tility, Xen has now also extended into the client and embedded space. Xen’s small footprint 
and security focus makes it suitable for a wide range of environments.

A great example of a client (desktop) usage of Xen is QubesOS, a Linux-based OS that’s 
focused on security through isolation of different processes in virtual machines, all run-
ning on top of the Xen hypervisor and even supporting the usage of Windows applications. 
QubesOS relies heavily in some key Xen-specific features:

•	Driver domains: network cards and USB drivers are run in separate VMs, so that security 
issues from the usage of those devices cannot compromise the entire system. See the 
diagram one driver domains.

•	Stub domains: the QEMU instance that handles the emulation for each HVM guests is 
not run in dom0, but rather in a separate PV or PVH domain. This isolation prevents se-
curity issues in QEMU from compromising the entire system.

3 of 7



4FreeBSD Journal • November/December 2024

•	Limited memory sharing: by using the grant sharing interfaces, a domain can decide 
what pages of memory are shared to which domains, thus preventing other domains 
(even semi-privileged ones) from being able to access all guest memory.

Similarly to QubesOS there’s also OpenXT: a Xen-based Linux distribution focused on cli-
ent security used by governments.
Driver Domains

XEN

HardwareNIC USB

NIC
Driver
Domain

NIC
Backend NIC Frontend

NIC Frontend

NIC Driver USB Driver

USB
Driver
Domain Domain X Domain Y

A couple more of unique Xen x86 features that are used by diverse products:
•	Introspection: allows external monitors (usually running in user-space on a different VM) 

to request notifications for actions performed by a guest. Such monitoring includes, 
for example, access to a certain register, MSR, or changes in execution privilege lev-
el. A practical application of this technology is DRAKVUF, a malware analysis tool that 
doesn’t require any monitor to be installed in the guest OS.

•	VM-fork: much like process forking, Xen allows forking of running VMs. Such a feature 
still doesn’t create a fully functional fork, but it’s enough to be used for kernel fuzzing. 
The KF/x fuzzing project puts the kernel into a very specific state, and then starts fuzz-
ing by creating forks of the guest. All forks start execution at the same instruction, but 
with different inputs. Being able to fork a VM in a very specific state extremely fast and 
in parallel is key to achieving a very high rate of iterations per minute.

Since the addition of the ARM port, there’s been a wide interest in using Xen on embed-
ded deployments, from industrial to automotive. Apart from the small footprint and security 
focus, there are some key features of Xen that make it appealing for such usages. First, the 
amount of code in Xen is quite limited when compared to Type-2 hypervisors, so it’s con-
ceivable to attempt to safety-certify it. There’s currently an effort upstream to attempt to 
comply with the applicable parts of the MISRA C standard so Xen can be safety certified.

Some unique features that make it very appealing to embedded uses include:
•	Small code base: makes it possible to audit and safety certify, also the code base is be-

ing adapted to comply with the MISRA C standard.
•	cpupools: Xen has the ability to partition the CPUs into different groups and assign a 

different scheduler to each group. Guests can then be assigned to those groups, allow-
ing for a set of guests that run using a real-time scheduler, like RTDS or ARUNC653, 
while a different set of guests can run using a general-purpose scheduler like credit2. 
(See the diagram on CPU pools.)

•	CPU pinning: it’s also possible to apply restrictions on which host CPUs get to schedule 
which guest CPUs, so, for example, a guest CPU can be exclusively given a host CPU 
when running latency sensitive workloads.

4 of 7



5FreeBSD Journal • November/December 2024

•	Deterministic interrupt latency: significant efforts have been put into Xen to ensure in-
terrupt latency remains both low and deterministic, even in the presence of cache pres-
sure caused by noisy neighbors. There’s a patch series currently in review that adds 
cache coloring support to Xen. Additionally, Xen is being ported to run on Arm-v8R 
MPU (memory protection unit) based systems. This is a quite significant change in Xen’s 
architecture, as it has always been supported on Memory Management Unit (MMU) 
based systems. With MPU, there is flat mapping between VA and PA and thus one can 
achieve real-time effect since there is no translation involved. There are a limited num-
ber of memory protection regions that can be created by Xen to enforce memory type 
and access restrictions on different memory ranges.

•	dom0less/hyperlaunch: a feature that originated in ARM and is currently also being im-
plemented for x86 allows multiple guests to be created statically at boot time. This is very 
useful for static partitioned systems, where the number of guests is fixed and known 
ahead of time. In such a setup the presence of an initial (privileged) domain is optional, as 
some setups don’t require further operations against the initially created guests.

CPU Pools

Security Critical General Purpose

CPU0 CPU2 CPU4 

CPU1 CPU3 CPU5 

CPU Pool 0
RDT5

CPU Pool 2
Credit2

VM1 VM4 VM2 VM3

FreeBSD Xen Support
FreeBSD Xen support was added quite late compared to other OSes. For instance, 

NetBSD was the first OS to formally commit Xen PV support because Linux patches for full 
PV support didn’t get merged until Linux 3.0 (around 2012).

FreeBSD had some initial support for PV, but that port was 32bit only and not fully func-
tional. Development on it stopped, and it ended up being deleted from the tree once PVH 
support was implemented. In early 2010, FreeBSD saw the addition of PV optimizations 
when running as an HVM guest, which allowed FreeBSD to make use of PV devices for I/O 
together with the usage of some additional PV interfaces for speedups like the PV timer.

In early 2014, FreeBSD gained support to run as a PVHv1 guest, and shortly after, as a 
PVHv1 initial domain. Sadly, the first implementation of PVH (also known as PVHv1) was 
wrongly designed, and had backed in too many PV-related limitations. PVHv1 was designed 
as an attempt to move a classic PV guest to run inside of an Intel VMX container. This was 
fairly limiting, as the guest still had a bunch of restrictions inherited from classic PV, and it 
was also limited to Intel hardware only.

After finding out about those design limitations, work started on moving to a different 
implementation of PVH. The new approach started with an HVM guest and stripped as 

5 of 7



6FreeBSD Journal • November/December 2024

much emulation as possible, including all emulation done by QEMU. Most of this work was, 
in fact, developed with FreeBSD, as that’s my main development platform, and I did exten-
sive work in order to implement what was later called PVHv2 and is now plain PVH.

FreeBSD x86 runs as both an HVM and PVH guest and supports running as a PVH dom0 
(initial domain). In fact, x86 PVH support was merged earlier in FreeBSD than Linux. Run-
ning in PVH mode, however, still has some missing features compared to a classic PV dom0. 
The biggest one is the lack of PCI passthrough support, which, however, requires changes 
in both FreeBSD and Xen to be implemented. There’s an ongoing effort in Xen upstream 
to add PCI passthrough support for PVH dom0, however, that’s still being worked on, and 
when finished, will require changes to FreeBSD for the feature to be usable.

On the ARM side, work is underway to get FreeBSD to run as an Aarch64 Xen guest. That 
required splitting the Xen code in FreeBSD to separate the architecture specific bits from 
the generic ones. Further work is being done to integrate Xen interrupt multiplexing with 
the native interrupt handling done in ARM.

Recent Developments in the Xen Community
Apart from the ongoing effort mentioned before that attempts to bring feature parity 

between a PV and PVH dom0 on x86, there’s a lot more going on in upstream Xen. Since 
the last Xen release (4.19), PVH dom0 has been a supported mode of operation, albeit with 
caveats due to some key features still missing.

The RISC-V and PowerPC ports are making prog-
ress to reach a functional state, hopefully in a couple 
of releases we might have them reach a state where 
the initial domain can be booted and guests can be 
created.

At least on x86, a lot of time in recent years has 
been spent on mitigating the flurry of hardware se-
curity vulnerabilities. Since the original Meltdown and 
Spectre attacks released in early 2018, the amount of 
hardware vulnerabilities has been increasing steadi-
ly. This requires a lot of work and attention on the Xen 
side. The hypervisor itself needs to be fixed so as not to be vulnerable, but it’s also quite like-
ly some new controls need exposure to the guests so they can protect themselves. To mit-
igate the impact that future hardware vulnerabilities have on Xen, we are working on a new 
feature called Address Space Isolation (which has also been known as Secret Free Xen), that 
aims to remove the direct map plus all sensitive mappings from being permanently mapped 
in the hypervisor address space. This would make Xen not vulnerable to speculative execu-
tion attacks, thus allowing the removal of a lot of the mitigations applied on entry points 
into the hypervisor, and possibly the need to apply more mitigations for any future specula-
tive issues.

Since the beginning of 2021, all Xen commits have been tested for builds on FreeBSD 
using the Cirrus CI testing system. This has been a massive help to keep Xen building on 
FreeBSD, as the usage of Clang plus the LLVM toolchain sometimes created or displayed 
issues that wouldn’t manifest when using the GNU toolchain. We currently test that Xen 
builds on all the supported FreeBSD stable branches, plus the HEAD development branch. 
Xen recently retired its custom testing system called osstest, and now solely relies on Git-

6 of 7

There’s a lot  
more going on  
in upstream Xen.



7FreeBSD Journal • November/December 2024

lab CI, Cirrus CI and Github actions to perform testing. This allows for a more open and well 
documented testing infrastructure, where it’s easier for newcomers to contribute and add 
tests. Future work in that area should include runtime testing on FreeBSD, even if initially us-
ing QEMU instead of a real hardware platform.

Recent releases also added toolstack support for exposing VirtIO devices to Xen guests. 
Both Linux and QEMU currently support using VirtIO devices with grants instead of guest 
memory addresses as the basis for memory sharing between the VirtIO frontends and 
backends. This addition hasn’t required a VirtIO protocol change, since it’s, instead, imple-
mented as a new transport layer. There are also efforts to introduce a transport layer not 
based on memory sharing, as this is a requirement for some security environments. Going 
forward, this would allow Xen to use VirtIO devices while keeping the security and isolation 
that’s guaranteed when using the native Xen PV IO de-
vices. The overall goal is to be able to reuse the VirtIO 
drivers as first-class interfaces on Xen deployments.

Safety certification and the adoption of MISRA C 
rules has also been one of the main tasks for the past 
releases. The last Xen release (4.19) has been extend-
ed to support 7 directives and 113 rules of a total of 18 
directives and 182 rules that conform to the MISRA C 
specification. Adoption is being done progressively, so 
that each rule or directive can be debated and agreed 
upon before being adopted. Given that the Xen code 
base wasn’t designed with MISRA compliance in mind, some of the rules will require either 
global or local per-instance deviations. Also, as part of the Safety Certification initiative work, 
it has started adding safety requirements and assumptions of use. Safety requirements pro-
vide a detailed description of all the expected behaviors of the software (Xen), enabling in-
dependent testing and validation of these behaviors.

The Future of Xen
Looking back at when x86 PVH support was first added on FreeBSD, it’s been a long and 

not always easy road. FreeBSD was an early adopter of PVH for dom0 mode, and a lot of 
Xen development has been done while using a FreeBSD PVH dom0. It’s also notable how 
FreeBSD has become a first-class Xen citizen in the recent years, as now there is build test-
ing of Xen on FreeBSD for each commit that goes into the Xen repository.

The port of FreeBSD to run as a Xen Aarch64 guest has also gained some traction re-
cently and is certainly a feature to look forward to given the increasing presence of ARM 
based platforms both on the server, the client, and the embedded environments.

It’s good to see Xen being used in so many different use-cases, and so different from its 
inception design purpose of being focused on server side (cloud) virtualization. I can only 
hope to see which new deployments and use-cases of Xen will be used in the future.

ROGER PAUL MONNÉ is a Software Engineer at Cloud Software Group and a FreeBSD 
developer.  His roles in the Xen community include being a Xen x86 maintainer and part of 
the Xen Security Team.  He has done extensive work on the x86 PVH implementation in 
both Xen and FreeBSD, and now spends most of his time working on security-related fea-
tures or chasing down bugs in Xen..

7 of 7

Recent releases also added 
toolstack support for 
exposing VirtIO devices  
to Xen guests.


