
AAffinity-aware Dynamic Pinning Scheduling for Virtual Machines 
 

Zhi Li, Yuebin Bai, Huiyong Zhang, Yao Ma 
 School of Computer Science, Beijing Key Laboratory of Network Technology, BeiHang University  

lizhi@cse,buaa.edu.cn, byb@buaa.edu.cn, willzhy@cse.buaa.edu.cn, mayao1986@gmail.com  

 

ABSTRACT 
 
Virtualization provides an effective management in 

server consolidation. The transparence enables different 
kinds of servers running in the same platform, making full 
use of hardware resource. However, virtualization 
introduces two-level schedulers: one from Guest OS, where 
the tasks are scheduled to virtual CPUs (VCPUs); the other 
from the virtual machine monitor (VMM), where VCPUs 
are scheduled to CPUs. As a result, the lower level 
scheduler is ignorant of the task information so that it 
cannot allocate appropriate proportion of CPU resource 
for every Guest OS in some cases. This paper presents an 
affinity-aware Dynamic Pinning Scheduling scheduler 
(DP-Scheduling). We aim at two objects: Bridging the 
semantic gap between Guest OS and VMM, introducing an 
affinity-aware method and providing the tasks information 
about CPU affinity to VMM; Bringing up a novel 
scheduling, DP-Scheduling, so that VCPU can be pinned or 
unpinned on one CPU’s running queue dynamically. For 
this purpose, we first get the Machine Address (MA) of 
process descriptor from the angle of VMM. The affinity 
information is also acquired before the task is enabled to 
run. To acknowledge the affinity information, DP-
Scheduling calls an API provided by us. Depending on the 
affinity information, we put forward a series of measures to 
implement pinning dynamically as well as to keep workload 
balance. All implementation is confined to Xen VMM and 
Credit scheduler. Our experiments demonstrate that DP-
Scheduling outperforms Credit scheduling by testing 
various indicators for CPU-bound tasks, without 
interfering the load balance.  

 

1. Introduction 
 

The development of multi-core technology enables 
server consolidation deployed in virtual machines (VM). 
The current mainstream in virtualization technology (such 
as Xen [5], KVM [25], VMware [29], etc.) contributes 
greatly to the isolation among VMs, the load balance for 
CPU resource, and the management for memory as well as 
hard disk. As a result, cloud computing [11] and High 
Performance Computing [12, 13] (HPC) gradually take the 
appropriate virtualization technology. Although 

virtualization allows the sharing of the underlying physical 
machine resources for different VMs, many thorny 
problems need to be solved (such as CPU usage, memory 
management, security, etc.). A hot issue on virtualization is 
how to improve the CPU utilization with the growing 
number of core, which is caused by the two-level 
independent schedulers and the perceived gap between 
them.  

Our goal in this paper is to design a Symmetric Multi-
Processors (SMP) scheduling, DP-Scheduling, to obtain 
better CPU utilization. Before scheduling, we capture the 
CPU affinity of the tasks in VMs and provide an API for 
bridging the perceived gap. Then, the DP-Scheduling calls 
the API before scheduling the VCPU where the aware task 
begins to run. Also, the DP-scheduling schedules VCPU 
mapping to CPU according to the affinity information. 
Besides, a policy is developed for keeping load balance, 
which means other kinds of tasks will not be penalized. Our 
experiments demonstrate that DP-Scheduling performs 
better than the original Credit scheduling by testing various 
indicators for CPU-bound tasks, without interfering with 
the load balance. 

The rest of the paper is organized as follows. In section 
2, we describe Xen, illustrate the Credit scheduler of Xen 
VMM and clarify the necessity of a new scheduling 
approach. In Section 3, we describe the affinity-aware 
mechanism which can infer the affinity information of tasks 
in VMs. Section 4 is the discussion of the design and 
implementation of DP-scheduling policy. Section 5 is the 
analysis of the experimental results from our prototype. We 
present related work in section 6 and conclusion in section 
7. 

 

2. Motivation 
 

2.1 Xen: A Brief Overview 
Xen, an open-source VMM, is in charge of hardware 

with the highest privilege [16]. There are two kinds of VMs: 
The privileged one, called domain0, is responsible for the 
management of other domains; the common one, called 
domainU, is the place where servers or applications are 
usually deployed. 

Xen virtualizes the resources for domains such as VCPU. 
Having no right to access hardware directly, VMs use 
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hypercalls to invoke functions in VMM. It means the guest 
OS has to be modified to fit the functionality, which is 
called para-virtualization. Besides, VMM proposes a 
highest ring, -1 ring, which makes guest OS can also be run 
in the ring of zero. We call this scheme hardware assisted 
virtualization which needs hardware supports, such as Intel-
VT [14] and AMD-V [15] technology. 

2.2 Credit Scheduler 
Credit scheduler is the default scheduler in Xen 

designed to ensure proportionate sharing of CPUs. It sets 
the proportion of CPUs for VMs according to WEIGHT 
and CAP. WEIGHT stands for the share of the CPU time 
that the domain gets, which is a relative value. The CAP, an 
absolute value, determines the maximum CPU time for the 
domain. The VCPU priority is divided into four kinds: 
BOOST, UNDER, OVER and IDLE. Credit stands for time 
slices, whose value determines the priority. There are still 
some time slices remaining for VCPUs in state of UNDER, 
which is opposite to OVER. Those VCPU having nothing 
to do will back to IDLE. BOOST is a special priority for 
improving the I/O response. Only an IDLE VCPU waken 
up by an event can be set to BOOST, which means it will 
be scheduled firstly. The arrangement of VCPUs in CPUs 
run queue is merely ordered by priority but no direct 
relationship with the credit value.  

2.3 A Scheduling Crisis: Cache Miss 
In non-virtualization environment, scheduler from OS, 

acquainted with tasks attributes, can schedule them to some 
CPUs directly. OS can be evenly distributed to each thread 
on CPUs for multi-threads task, which makes full use of 
CPU resources in most cases. OS would not like to migrate 
the CPU-bound tasks except for loading balance, which 
avoids many L2 cache misses. However, there is a change 
in virtualization. Tasks can miss L2 cache even when Guest 
OS does not migrate them into other VCPU. We run the 
STREAM benchmark with different array sizes (1MBytes, 
3MBytes, and 5MBytes) in both non-virtualization and 
virtualization environment with the same number of 
CPU/VCPU (8) and memory (1GBytes) as well as the same 
hardware platform. Detailed descriptions of our 
experimental test bed are given in Section 5. We run same 
tasks both on non-virtualized host and Xen-based system. 
We use Oprofile and Xenoprof  [27] to capture the cache 
miss counts per 10000 counts. The result is shown in 
Figure 1. The number of threads has few effects on cache 
miss counts, but virtualization leads to more L2 cache miss 
counts, which means more memory access times and lower 
CPU usage. 

2.4 Analysis of the Issue 
The two-level schedulers, both from Guest OS and 

VMM, produce two kinds of load balance for SMP: The 
average task location for VCPU and the average VCPU 
location for CPU. Therefore, CPU will be fully used, which 
is Credit Scheduler’s intention. However, it cannot 

distinguish VCPUs from different VMs, resulting in many 
VCPUs from a VM running on one CPU sometimes. The 
more VMs, the more frequent situation in this kind. With 
the increasing number of cores, the negative impact of this 
situation becomes more serious. 

Although Guest OS strives to make threads run in 
different VCPUs, Credit scheduler can put some VCPUs in 
this kind to the same CPU run queue arbitrarily. Hence, two 
or more CPU-bound threads take turns to run, which makes 
L2 cache refresh frequently. In addition, Credit scheduler 
will seek another runnable VCPU with higher priority when 
the local CPU run queue includes no BOOST or UNDER 
VCPU. This migration will be more frequently when total 
number of VCPU is more than CPU . Once this kind VCPU 
is migrated to other CPU run queue, L2 cache will be 
missed completely. 

 
Figure 1.  L2 Cache misses on both non-

virtualization and virtualization 
To bridge the semantic gap between Guest OS and 

VMM, our new scheduler, affinity-aware DP-Scheduling, 
introduces an affinity-aware method and provides the task 
affinity information to VMM. Then, it brings up a novel 
scheduling, DP-Scheduling, for implementing that VCPU 
can be pinned or unpinned on one CPU’s running queue 
dynamically. 

 

3. CPU Affinity-aware Method 

3.1 Timing Control 
In the x86 architecture, the structure of virtual main 

memory is a two-level Page Table (PT). Each process is 
assigned to a page table. Page table is a tree, whose root is 
a page of 4KBytes, called the Page Directory (PD). Each 
page directory entry points to 4KBytes pages respectively. 
When a processor switches memory address, operating 
system will notify the Memory Management Unit (MMU) 
by writing this address to the control register CR3. 
Meanwhile, if no such item in Translation Lookaside 
Buffer (TLB), the processor will also write this address into 
TLB. 
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In virtualization, Guest OS has no such authority for this 
form of write operations, so hypercall is invoked to inform 
VMM. We do not care the content of CR3 wrote by VMM, 
but the time when the content is to be changed. This means 
a new process will be run, which is the best opportunity for 
capturing the process information. Therefore, the scheduler 
can acquaint with the process scheduled immediately, 
ensuring the perception in a real-time. If the task was run 
before, it is the best time to make statistics. If not, the hard 
affinity information (detailed in Section 3.2) can also be 
captured. 

3.2 Methodology for Capture 
Virtualization has brought the concept of Pseudo-

physical Address (PA), regarded as the “continuous” 
memory address by Guest OS. Virtual Address (VA) 
provided for applications in Guest OS can be mapped to PA. 
The real continuous memory, called Machine Address 
(MA), is divided into several parts for Guest OS by VMM. 
There are two tables for translation between MA and PA: 
Machine-to-Physical Translation Table (M2P) and 
Physical-to-Machine Translation Table (P2M). This makes 
the convenient address translation between Guest OS and 
VMM. The page table virtualization, such as MMU para-
virtualization and shadow page, can implement the 
translation between VA and MA. 

Firstly, we get VA from the register ESP, and compute 
VA of the kernel stack pointer. As the pointer of the 
process descriptor lies in the bottom of the kernel stack, we 
can get the VA of the process descriptor. Then, the VA of 
affinity information can be captured easily according to the 
offset. Finally, we translate the VA to MA, and convert the 
content of MA to the kind that we want. 

We propose the Affinity Coefficient (AC) to quantify 
CPU Affinity. If the tasks are pinned on VCPU by users 
from Guest OS, the value of AC will be the highest. We 
can capture this information by reading the affinity bits 
called hard affinity in task struct. In addition, the value of 
AC will be increased by the operation of tasks in a period. 
Times of memory read/write can make AC rise oppositely 
to the counts of I/O access. We make a region for the value 
of AC. It can be set from 0 to 100. The initial value is 50, 
which can be reduced when I/O access happens and added 
when reading or writing memory. Once the hard affinity is 
detected, it will be set to 100. 

3.3 API: Bridging the Semantic Gap 
We now get the real-time CPU affinity information by 

the methods mentioned in Section 3.1 and 3.2. In order to 
inform scheduler timely, we provide an API, which can be 
called during scheduling. First, a new struct, Process 
Information (PI), is produced. We then add a member of PI 
to the VCPU struct. The information captured, AC for 
instance, will be written to PI. The API is responsible for 
informing information about CPU affinity to DP-scheduler. 

Every time the API called, PI will be refreshed to the 
VCPU corresponding. 

 

4. The Design of Scheduler 

4.1 Scheduling Framework 
As Process Information (PI) is the premise of scheduling, 

the scheduler should call the API to capture the CPU 
affinity of the next running task. In Figure 2, every time the 
content of CR3 changes, PI Manager will catch the virtual 
address of PI. The part of affinity-aware detector is 
responsible for acquiring the CPU affinity information by 
translating VA to MA, detailed in Section 3. In the 
scheduling period, VCPU monitor first provides VCPU 
information modified by API to scheduler. Then, DP-
Scheduling decides whether this VCPU needs pinning. 

MemoryDisk . . .

. . .
Guest OS 2

Driver 
Domain Guest OS 1 Guest OS n

Core Core 

L2 cache

Core Core 

L2 cache

Core Core 

L2 cache

. . .

PI Manager
Scheduler

VCPU
Monitor

DP-
Scheduling

Affinity-aware
 Detector

API

 

Figure 2. The architecture of scheduling framework

4.2 DP-Scheduling Model 
In this section, we prove that DP-Scheduling 

outperforms Credit scheduling by formalizing the model. 
The theoretical result also shows the necessity of DP-
Scheduling. 

First, we make the following assumptions. 
a). The total number of VCPUs from domains is more 

than CPU . Actually, it is the most common scenarios.  
b).The number of VCPU pinned by DP-Scheduling is 

less than CPU at any time. If not, two or more VCPUs can 
be pinned on one same CPU in some cases. Cache miss will 
happen repetitively according to the principle of rotation, 
which leads to bad efficiency 

Vi = {Vi1 , Vi2 , … , Vi|Vi |} denotes the set of VCPU from 
CPUi, where |Vi| stands for the number of VCPUs. In order 
to keep load balance, two cases may happen for CPUi: A 
VCPU from Vi , called VCPU_MIip , may migrate to other 
CPU; A VCPU from Vj , called VCPU_MIjq , may be 
migrated to CPUi. Therefore, if all of VCPU in Vi have a 
time slice to execute within a period of time T, the 
overhead is as follow: 
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�i=|Vi |*Slot + �(VCPUMI jq
� ,�

*��� )  

 + � VCPUMI jp
j,q

*Slot – � VCPUMI ip
p

*Slot  (i) 

We define Slot as one time slice. Cj = {Cj1, Cj2, … , Cj�Vj �} 
denotes the cost of migrating VCPU_MIjq  to CPUi, such as 
cache failure, etc. j can be the index of all CPUs except i. 
CPU={CPU1, CPU2, … , CPU|CPU |}  indicates the set of CPU, 
where |CPU|  is the number of CPU. The set of  
� VCPUMI ipp  will be executed on other CPUs. This is, 
� x, p, CPUx 	 CPU, VCPUxp 	 Vx, 
 y, q, CPUy 	
CPU, VCPUyq 	 Vy ,VCPUMI xp

� Slot =  VCPUMI yq � Slot . 
This presents neutralization. Therefore, the overhead of all 
CPUs in Credit Scheduler within the period of time T is : 

�c = � �i
i

= �|Vi|
i

*Slot +  Nc*AVGc(C)  (ii) 

, where 
Nc*AVGc (C)= � �(VCPUMI jq

j,q

� Cjq )    (iii) 
i

 

Nc  denotes the times of migration in T, and ��� (C) is 
the average cost of migration.  

Also, the overhead in DP-Scheduling in the same 
situation is: 

�D = � |Vi |
i

*Slot + ND*AVGD(C) + C(CPUidle )   (iv) 

 �� denotes the times of migration in T, and ���(C) 
is the average cost of migration in DP-Scheduling. As DP-
Scheduling pins VCPU to CPU in some cases (Section 4.3), 
CPUidle = {CPU1

idle , CPU2
idle , … , CPU|CPU |

idle }  indicates the 
cost of  CPUs going to IDLE when load balance is broken. 
C(������� )  stands for the time wasted by IDLE CPUs 
when more than one VCPU are waiting in other CPUs. 

Therefore, the performance comparison between Credit 
and DP-Scheduling is: 

� =  �c  - 
�D =  �� *���(C) - ��*���(C) - C(������� ) (v) 

As DP-Scheduling avoids migration in some cases, the 
migration is less than Credit Scheduling. That is,  �� > ��. 
Meanwhile, DP-Scheduling pins the VCPU whose 
migration can result in serious cache failure. This cost is 
over the average. That is, ���(C)  > ���(C) . As 
assumption (b) indicates the number of VCPUs pinned is 
less than CPUs and assumption (a) indicated the VCPU 
number is more than CPU, there always exists one or more 
VCPU(s) for migrating when a CPU has no BOOST and 
UNDER VCPUs except for no runnable VCPU in other 
CPUs. Therefore, C(������� ) = 0. Now, we prove that: 

� >  0  (vi) 
Therefore, the theoretical result presents that DP-

Scheduling has lower overhead than Credit. Also, with the 
increasing of difference between ��� (C) and ���(C), 
the performance gap between the two schedulers will be 

further enlarged. Besides, the result shows that a new 
scheduler reducing VCPUs’ migrating cost is needed. 

4.3 Basic Scheduling: S’ 
We present the basic Scheduling, S’, for implementing 

dynamic pinning. S’ first calls the API for capturing the 
task affinity information from the VCPU next to be run.  
Also, we make a threshold of AC (Affinity Coefficient) for 
deciding the degree of affinity information. Once AC is 
over this threshold, S’ will make the VCPU corresponding 
non-migrating, VCPU Y.1 in Figure 3 (B) for instance.  
Also, S’ will unpin a VCPU pinned before if the degree of 
affinity information is not enough, which means migration 
will not bring too many cache misses. 

A
Common VCPU Run Queue

B
Pinned-VCPU Run Queue

CPU jCPU i CPU i CPU j

VCPU 
Y.1

VCPU 
X.1

VCPU 
Y.0

VCPU 
Y.0

VCPU 
X.1

VCPU 
Y.1

VCPU 
X.0

VCPU
X.0

CPU jCPU i CPU i CPU j

VCPU 
Y.1

VCPU 
X.1

VCPU 
Y.0

VCPU 
Y.1

VCPU 
X.1

VCPU 
Y.0

VCPU 
X.0

VCPU
X.0

Common VCPU Pinned VCPUIdle VCPU

Figure 3. Comparison between common and pinned 
VCPU run queue. 

We compare the situation of VCPU migration between 
Credit scheduler and S’ as shown in Figure 3.There is no 
runnable VCPU in the local CPU run queue when VCPU 
X.0 gets back to the state of Idle. For keeping the load 
balance, Credit scheduler (A) migrates VCPU Y.1 from the 
head of CPU j’s running queue, whereas S’ (B) migrates 
VCPU Y.0 for VCPU Y.1 was pinned. As VCPU Y.1 is to 
run a task with high CPU affinity, S’ will avoid cache miss, 
especially when CPU i and CPU j are not in one CPU 
socket. 

CPU jCPU i CPU m CPU n

VCPU 
Y.1

VCPU 
Y.0

VCPU 
Y.3

VCPU 
X.1

VCPU 
Y.2

Common VCPU

Pinned VCPU

Idle VCPU

VCPU 
X.2

VCPU 
X.0

VCPU 
X.3

CPU jCPU i CPU m CPU n

VCPU 
Y.1

VCPU 
Y.0

VCPU 
Y.3

VCPU 
X.1

VCPU 
Y.2

VCPU 
X.2

VCPU 
X.0

VCPU 
X.3

Idle CPU  
Figure 4. SSituation of load balance broken

However, if too more VCPUs is pinned at one time, the 
starvation of some CPUs may occur as shown in Figure 4. 
As CPU i has no runnable VCPU, VCPUs from other CPUs 
cannot be migrated. CPU i has to turn to IDLE in spite of 
some VCPUs probably waiting in other CPU run queue. 
Therefore, load balance on SMP is broken, which may 
result in lower CPU utilization. S’ solves this problem by 
making a policy: VCPUs pinned at one time must be less 
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than CPU, which is also our assumption (b) in theory 
model. If the number of VCPU pinned is |CPU| � 1, VCPU 
will be not pinned even when high CPU affinity tasks runs. 
Another reason for this policy is that two high affinity tasks 
taking turns to execute will bring serious cache misses. 
However, it is not sufficient, but just an essential condition. 
This is why the basic scheduler S’ needs modification as 
below. 

4.4 DP-Scheduling Algorithm 
The basic Scheduling, S’, mainly accomplishes the 

dynamic pinning, which makes the migration sequence of 
VCPU change. Although it can avoid some negative effects 
as shown in Figure 4, load balance cannot be ensured. 
Besides, the case in Figure 5 shows that VCPU Y.1 and 
VCPU X.0 will take turns to execute, leading to serious 
cache failure. So, the measure we adopt should pin VCPU 
dispersedly. 

CPU jCPU i CPU m CPU n

VCPU 
Y.1

VCPU 
X.0

VCPU 
Y.2

VCPU 
Y.0

VCPU 
X.3

VCPU 
X.2

VCPU 
X.1

Common VCPU Pinned VCPU

VCPU 
Y.3

 
Figure 5. The defect of S’ 

Therefore, we propose a series of strategies as follow: 
(a).pin VCPU to the CPU with no pinned VCPU at this 

time. 
(b).pin VCPU to the CPU with lower workload. 
(c).pin VCPU to the local CPU if both (i) and (ii) do not 

happen. 
(d).do not migrate the VCPU actively when it is 

unpinned. 
(e).unpin the VCPU with the lowest value of AC when 

the number of CPU equals |CPU|. 
(f).unpin the VCPU pinned before if it goes to the state 

of OVER or IDLE. 
(a), (b), (c), and (e) are used for keeping load balance, 

which eradicates the case that a CPU goes to IDLE when 
many runnable VCPUs are still waiting. (d) aims at 
reducing the cost of unnecessary migration. We apply (f) to 
reduce the effects on VCPUs need pinning following up for 
the total pinning number as shown in (e) cannot be too 
much. Besides, this kind of VCPUs can also be pinned 
according to its value of AC, when they get back to 
UNDER or BOOST. 

We implement (b) by computing the average running 
time of CPUs respectively in the recent periods. VCPU will 
be pinned to the CPU with the lowest value, which means 
this CPU goes to the state of IDLE more often. Other 

methods in estimating CPU load can also be available: 
average or moving average of the amount of one CPU’s 
running time, for instance. The policy we selected works 
well. 
Let �  stand for VCPU set from all domains, that is, 
� = {VCPU1, VCPU2, … , VCPU|�|}. Let �p  be the set of 
VCPUs that were pinned, whereas �up  is the set of 
unpinning VCPUs. Hence, � =  �p  � �up , and |�| =
  |�p| + |�up |. Besides, let � = {�1, �2, … , �|�|}, where �i 
is the value of AC for VCPUi. 
For each VCPUi  	 � { 

CPUx = VCPUi ->processor; 
/*VCPUi has been pinned by its high value of AC*/ 
If (�i ! THRESHOLD and VCPUi  	 �p) Return; 

/*VCPUi with its high value of AC was not pinned */ 
Else If (�i ! THRESHOLD and VCPUi  	 �up   

and VCPUi ->pri > OVER){ 
peer_cpu = select_peer(VCPUi); 
set_unmigrateable(peer_cpu, vcpu); 
del(�up , VCPUi); 

add(�p, VCPUi); 

} 
/*Pinned  VCPUi   contains low value of AC currently 
*according to strategy (d)*/ 
Else If (�i < "#$%&#'*� and VCPUi  	 �p){ 

set_migrateable(CPUx, VCPUi); 
del(�p, VCPUi); 

add(�up , VCPUi); 

} 
/*The total number of VCPUs should not over  
*CPU number -1*/ 
If (|�p| == |CPU|) 

set_migrateable_by_ac(�p, �up ); 

} 

In the pseudo-code above, select_peer is a function to 
achieve (a), (b) and (c), and set_migrateable_by_ac is to 
achieve (e). set_unmigrateable and set_migrateable 
implement pinning and unpinning vcpu dynamicly. 
Threshold is set to 75 through repeated experiments. 

DP-Scheduling scheduler is based on Xen VMM, which 
provides an interface to schedulers. There is a structure 
including pointers to functions that is used to implement 
the scheduler [16]. We add DP-Scheduling to the scheduler 
set by defining the sched_dps_def as follows., 

struct scheduler sched_dps_def = { 
.name = “DP-Scheduling Scheduler”, 
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.opt_name = “dp-scheduling”, 

.sched_id = XEN_SCHEDULER_DPS, 
… 
.do_schedule = dpssched_schedule. 
… 
} 
do_schedule is responsible for scheduling VCPUs. The 

codes we wrote are just in do_schedule. Also, we modify 
the function do_domctl (in domctl.c) for adding the DP-
Scheduling strategies. 

 

5. Performance Evaluation 
 

5.1 Experimental Platform 
Our experimental hardware platform is the IBM 

Bladecenter HS21, with two quad-core of Intel Xeon 5405 
at 2.0GHZ. Every two cores share 6MB L2 cache. The 
server has 4G of RAM. 

The server runs the CentOS-5.4 in Domain 0 with Xen 
3.4.3 Hypervisor 1

5.2 Benchmarks 

. The Guest OS in Domain U is also 
CentOS-5.4. Each DomainU is allocated 8 VCPUs, 1G 
RAM, 8GB Disk and adopts the bridge network interface 
for the interconnection with Dom0 and DomainU. 

We select three different types of current mainstream 
benchmarks listed in Table 1 to ensure the experiment 
results accuracy and convincing. In addition, the MPI 
library used is mpich2-1.0 [10]. 

Table 1. BBenchmarks Overview 

Benchmark 
Category Code Name Variabl

e Measurement 

HPCC STREAM Array 
size 

Memory 
Bandwidth 

EPCC OpenMP Micro-
benchmark suite 

Thread 
Numbe

r 
Time 

IMB 
Sendrecv Messag

e Size 
Transfer 
Speed Exchange 

High Performance Computing Challenge (HPCC) [7] is 
a standard set of testing system performance in kinds of 
aspects, including CPU speed, network bandwidth, memory 
read speed, and network delay, etc. We use STREAM 
benchmark to test the speed of memory read. The results 
are under different conditions by the size of arrays. 

Edinburgh Parallel Computing Centre (EPCC) OpenMP 
micro-benchmarks [8] are to test the synchronization and 
the operations on cycles as well as arrays. It contains a 

                                                             
1 The reason we do not choose newest version, Xen 4.0.0, is that no stable 

Xenoprof patch is supported until now. Besides, the default scheduler in 
Xen 3.3.x is as same as in Xen 4.0.0. 

series of OpenMP test programs, such as testcrit, testlock, 
testorder, etc. We integrate them together to test the overall 
performance. 

Intel MPI benchmark (IMB) [9] is a set used to test 
some important MPI functions. In our experiment, we use 
Sendrecv and Exchange in IMB to evaluate the transfer 
speed with different schedulers. 

5.3 Results and Analysis 
We compare the Credit scheduler with DP-Scheduling 

scheduler in our experiments. We will run every 
benchmark in VM with each scheduler respectively on our 
platform, where other configurations are all the same. 
Firstly, we run scripts at least 1000 times in each case 
though some benchmarks are also executed repeatedly. We 
then compute the average value except for some few 
abnormal points. The results are as follows. 

We run 8 OpenMP threads of STEAM with different 
array sizes to fetch the memory bandwidth by adopting 
Credit scheduler and DP-Scheduling scheduler respectively. 
Each thread works with non-synchronization. The result is 
in Figure 6. When the size of arrays is small, total arrays 
can be cached in L2 cache. As DP-Scheduling pins the 
VCPU running this task to CPUs by strategies proposed in 
Section 4.4, it largely guarantees the L2 cache hits. 
However, Credit Scheduler migrates VCPUs among CPUs 
frequently for keeping load balance, which leads to L2 
cache updated constantly. With the increase of arrays size, 
the two results become close. But the performance of DP-
Scheduling scheduler is still not below the one of Credit 
Scheduler as it also has the load balancing policy. 

OpenMP micro-benchmark contains a suite of high 
synchronous tasks, where the contention on the critical 
resource among threads will happen frequently. As shown 
in Figure 7, the performance gap between the two 
schedulers is growing with the increase of threads’ number. 
On one time, a blind migration can also result in terrible L2 
cache failure. On the other time, DP-Scheduling scheduler 
reduces the time of waiting for locks obtained by other 
thread for it makes VCPUs in warm CPU affinity pin on 
different CPU run queues. This will be more obvious when 
the number of threads is closed to the total number of  
VCPU in VM. 

Sendrecv and Exchange, the parallel transfer 
benchmarks in IMB, are two different kinds of testing the 
transfer speed among threads. Any thread can receive 
messages from its left thread and send messages to its right 
neighbor in Sendrecv, whereas Exchange makes all threads 
send and receive messages from both sides. We create 8 
threads as same as VCPU number in VM for both Sendrecv 
and Exchange, as shown in Figure 8 and Figure 9. When 
Message size is too small, the bottleneck lies in the sending 
and receiving message for too many messages are waiting.  

When the message size is too large, the size of data 
buffer pools is the main factor that determines the transfer 
speed. DP-Scheduling scheduler significantly improves the 
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speed in the range of 128 Bytes to 131072 Bytes, where the 
CPU speed plays a decisive role. For Credit scheduler, 
operations on sending and receiving make VCPUs switch 
frequently if two VCPUs running the neighbor threads lie 
in same CPU run queue, while DP-Scheduling scheduler 
can guarantee the real-time interaction among threads as 
well as load balance. 

 

Figure 6. BBandwidth in STREAM benchmark 

 
Figure 7. Running time of OpenMP Micro-

benchmarks 

Figure 8.  Sendrecv of IMB benchmark 
Our benchmarks have a wide coverage among CPU-

bound applications.  STREAM is a typical example of 
asynchronous multi-thread, Openmp test suite has authority 
in high synchronization, and the two benchmarks from 
IMB are common use in parallel transfer. All in all, the 
experimental results indicate that DP-Scheduling strategy 

performs well in numerous CPU-bound tasks. Either 
synchronous or asynchronous, DP-Scheduling can 
effectively increase CPU utilization by reducing 
unnecessary migration. 

 
Figure 9. Exchange of IMB benchmark 

 

6. Related Work 

CPU scheduling policy plays a crucial role in 
accelerating the performance of VM in virtualization. The 
traditional schedulers, such as Credit scheduler and SEDF, 
are universal for all kinds of applications. [21] evaluated 
the two schedulers with different configurations. In future, 
Credit 2 [22] will be added to the Xen tree. It will focus on 
the fairness among VM, working well for latency-sensitive 
workloads, hyperthreads, and cores power. 

There are several classifications for applications, such as 
single-thread/multi-threads, synchronization/asynchroniza-
tion, etc. One significant way is to classify them by the 
operations both on CPU and I/O, that is, CPU-bound and 
I/O-bound applications. Therefore, many schedulers based 
on them aim at improving such special applications. The 
work in [23] proposed an efficient I/O virtualization for 
high end systems, by offloading the virtualization 
functionality from the Guest OS onto device. [1] proposed 
a communication-aware CPU scheduler in Xen by 
modifying the SEDF scheduler to improve the throughput 
for I/O-bound applications. [24] provided a policy, called 
VMM-bypass I/O, for improving I/O performance. It 
reduces the I/O response time by carrying I/O operations 
from VMM to Guest OS. [6] provided a task-aware virtual 
machine scheduling mechanism, where partial boosting is 
introduced to thin the task-level granularity. [20] presented 
a task-aware based co-scheduling scheduler to meet the 
need of concurrent application in virtual SMP system. A 
hybrid scheduling framework [3] was presented to reduce 
the CPU time when the system workload was the 
concurrent applications. [2] made Xen friendlier to the soft 
real-time tasks by modifying Credit scheduler, which 
makes soft real-time tasks run well in non-preemptive 
scheduler. This method provides a novel thinking in 
supporting soft real-time tasks in VMM.  

There are also some performance monitors [26, 27, 28], 
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which configure the schedulers to reach high performance 
by the information captured. [4] analyzed the performance 
of a server consolidation benchmark on a multi-core 
platform of Xen virtual environment. CPI (Cycles Per 
Instruction) and L2 cache misses per instruction are studied 
to prove the advantage of larger caches. 

7. Conclusion  
In this paper, we develop a novel approach for 

improving the utilization of CPU resource by reducing both 
cache miss for CPU-bound tasks and waiting time for 
synchronous threads. The solution lies in the hypervisor 
scheduler. Firstly, we compare the cache miss between 
non-virtualization and virtualization, and do analysis on it. 
Then, we propose a method of capturing CPU affinity to 
bridge the gap between Guest OS and VMM, and provide 
an API for the new scheduler, called DP-Scheduling 
scheduler based on Xen Credit Scheduler. Depending on 
the information from API, DP-Scheduling scheduler will 
pin or unpin the VCPUs from CPU dynamically as well as 
keeping load balance. We apply a series of strategies for 
this scheduler in order to make VCPU run in CPU 
dispersedly, which can bring high cache hits. The 
experiment designed contains plenty kinds of CPU-bound 
applications. And the results demonstrate that affinity-
aware DP-Scheduling scheduler can promote the 
performance of the virtual machine system efficiently. 
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