
AAffinity-aware Dynamic Pinning Scheduling for Virtual Machines

Zhi Li, Yuebin Bai, Huiyong Zhang, Yao Ma
 School of Computer Science, Beijing Key Laboratory of Network Technology, BeiHang University

lizhi@cse,buaa.edu.cn, byb@buaa.edu.cn, willzhy@cse.buaa.edu.cn, mayao1986@gmail.com

ABSTRACT

Virtualization provides an effective management in

server consolidation. The transparence enables different
kinds of servers running in the same platform, making full
use of hardware resource. However, virtualization
introduces two-level schedulers: one from Guest OS, where
the tasks are scheduled to virtual CPUs (VCPUs); the other
from the virtual machine monitor (VMM), where VCPUs
are scheduled to CPUs. As a result, the lower level
scheduler is ignorant of the task information so that it
cannot allocate appropriate proportion of CPU resource
for every Guest OS in some cases. This paper presents an
affinity-aware Dynamic Pinning Scheduling scheduler
(DP-Scheduling). We aim at two objects: Bridging the
semantic gap between Guest OS and VMM, introducing an
affinity-aware method and providing the tasks information
about CPU affinity to VMM; Bringing up a novel
scheduling, DP-Scheduling, so that VCPU can be pinned or
unpinned on one CPU’s running queue dynamically. For
this purpose, we first get the Machine Address (MA) of
process descriptor from the angle of VMM. The affinity
information is also acquired before the task is enabled to
run. To acknowledge the affinity information, DP-
Scheduling calls an API provided by us. Depending on the
affinity information, we put forward a series of measures to
implement pinning dynamically as well as to keep workload
balance. All implementation is confined to Xen VMM and
Credit scheduler. Our experiments demonstrate that DP-
Scheduling outperforms Credit scheduling by testing
various indicators for CPU-bound tasks, without
interfering the load balance.

1. Introduction

The development of multi-core technology enables
server consolidation deployed in virtual machines (VM).
The current mainstream in virtualization technology (such
as Xen [5], KVM [25], VMware [29], etc.) contributes
greatly to the isolation among VMs, the load balance for
CPU resource, and the management for memory as well as
hard disk. As a result, cloud computing [11] and High
Performance Computing [12, 13] (HPC) gradually take the
appropriate virtualization technology. Although

virtualization allows the sharing of the underlying physical
machine resources for different VMs, many thorny
problems need to be solved (such as CPU usage, memory
management, security, etc.). A hot issue on virtualization is
how to improve the CPU utilization with the growing
number of core, which is caused by the two-level
independent schedulers and the perceived gap between
them.

Our goal in this paper is to design a Symmetric Multi-
Processors (SMP) scheduling, DP-Scheduling, to obtain
better CPU utilization. Before scheduling, we capture the
CPU affinity of the tasks in VMs and provide an API for
bridging the perceived gap. Then, the DP-Scheduling calls
the API before scheduling the VCPU where the aware task
begins to run. Also, the DP-scheduling schedules VCPU
mapping to CPU according to the affinity information.
Besides, a policy is developed for keeping load balance,
which means other kinds of tasks will not be penalized. Our
experiments demonstrate that DP-Scheduling performs
better than the original Credit scheduling by testing various
indicators for CPU-bound tasks, without interfering with
the load balance.

The rest of the paper is organized as follows. In section
2, we describe Xen, illustrate the Credit scheduler of Xen
VMM and clarify the necessity of a new scheduling
approach. In Section 3, we describe the affinity-aware
mechanism which can infer the affinity information of tasks
in VMs. Section 4 is the discussion of the design and
implementation of DP-scheduling policy. Section 5 is the
analysis of the experimental results from our prototype. We
present related work in section 6 and conclusion in section
7.

2. Motivation

2.1 Xen: A Brief Overview
Xen, an open-source VMM, is in charge of hardware

with the highest privilege [16]. There are two kinds of VMs:
The privileged one, called domain0, is responsible for the
management of other domains; the common one, called
domainU, is the place where servers or applications are
usually deployed.

Xen virtualizes the resources for domains such as VCPU.
Having no right to access hardware directly, VMs use

2nd IEEE International Conference on Cloud Computing Technology and Science

978-0-7695-4302-4/10 $26.00 © 2010 IEEE

DOI 10.1109/CloudCom.2010.51

242

hypercalls to invoke functions in VMM. It means the guest
OS has to be modified to fit the functionality, which is
called para-virtualization. Besides, VMM proposes a
highest ring, -1 ring, which makes guest OS can also be run
in the ring of zero. We call this scheme hardware assisted
virtualization which needs hardware supports, such as Intel-
VT [14] and AMD-V [15] technology.

2.2 Credit Scheduler
Credit scheduler is the default scheduler in Xen

designed to ensure proportionate sharing of CPUs. It sets
the proportion of CPUs for VMs according to WEIGHT
and CAP. WEIGHT stands for the share of the CPU time
that the domain gets, which is a relative value. The CAP, an
absolute value, determines the maximum CPU time for the
domain. The VCPU priority is divided into four kinds:
BOOST, UNDER, OVER and IDLE. Credit stands for time
slices, whose value determines the priority. There are still
some time slices remaining for VCPUs in state of UNDER,
which is opposite to OVER. Those VCPU having nothing
to do will back to IDLE. BOOST is a special priority for
improving the I/O response. Only an IDLE VCPU waken
up by an event can be set to BOOST, which means it will
be scheduled firstly. The arrangement of VCPUs in CPUs
run queue is merely ordered by priority but no direct
relationship with the credit value.

2.3 A Scheduling Crisis: Cache Miss
In non-virtualization environment, scheduler from OS,

acquainted with tasks attributes, can schedule them to some
CPUs directly. OS can be evenly distributed to each thread
on CPUs for multi-threads task, which makes full use of
CPU resources in most cases. OS would not like to migrate
the CPU-bound tasks except for loading balance, which
avoids many L2 cache misses. However, there is a change
in virtualization. Tasks can miss L2 cache even when Guest
OS does not migrate them into other VCPU. We run the
STREAM benchmark with different array sizes (1MBytes,
3MBytes, and 5MBytes) in both non-virtualization and
virtualization environment with the same number of
CPU/VCPU (8) and memory (1GBytes) as well as the same
hardware platform. Detailed descriptions of our
experimental test bed are given in Section 5. We run same
tasks both on non-virtualized host and Xen-based system.
We use Oprofile and Xenoprof [27] to capture the cache
miss counts per 10000 counts. The result is shown in
Figure 1. The number of threads has few effects on cache
miss counts, but virtualization leads to more L2 cache miss
counts, which means more memory access times and lower
CPU usage.

2.4 Analysis of the Issue
The two-level schedulers, both from Guest OS and

VMM, produce two kinds of load balance for SMP: The
average task location for VCPU and the average VCPU
location for CPU. Therefore, CPU will be fully used, which
is Credit Scheduler’s intention. However, it cannot

distinguish VCPUs from different VMs, resulting in many
VCPUs from a VM running on one CPU sometimes. The
more VMs, the more frequent situation in this kind. With
the increasing number of cores, the negative impact of this
situation becomes more serious.

Although Guest OS strives to make threads run in
different VCPUs, Credit scheduler can put some VCPUs in
this kind to the same CPU run queue arbitrarily. Hence, two
or more CPU-bound threads take turns to run, which makes
L2 cache refresh frequently. In addition, Credit scheduler
will seek another runnable VCPU with higher priority when
the local CPU run queue includes no BOOST or UNDER
VCPU. This migration will be more frequently when total
number of VCPU is more than CPU . Once this kind VCPU
is migrated to other CPU run queue, L2 cache will be
missed completely.

Figure 1. L2 Cache misses on both non-

virtualization and virtualization
To bridge the semantic gap between Guest OS and

VMM, our new scheduler, affinity-aware DP-Scheduling,
introduces an affinity-aware method and provides the task
affinity information to VMM. Then, it brings up a novel
scheduling, DP-Scheduling, for implementing that VCPU
can be pinned or unpinned on one CPU’s running queue
dynamically.

3. CPU Affinity-aware Method

3.1 Timing Control
In the x86 architecture, the structure of virtual main

memory is a two-level Page Table (PT). Each process is
assigned to a page table. Page table is a tree, whose root is
a page of 4KBytes, called the Page Directory (PD). Each
page directory entry points to 4KBytes pages respectively.
When a processor switches memory address, operating
system will notify the Memory Management Unit (MMU)
by writing this address to the control register CR3.
Meanwhile, if no such item in Translation Lookaside
Buffer (TLB), the processor will also write this address into
TLB.

243

In virtualization, Guest OS has no such authority for this
form of write operations, so hypercall is invoked to inform
VMM. We do not care the content of CR3 wrote by VMM,
but the time when the content is to be changed. This means
a new process will be run, which is the best opportunity for
capturing the process information. Therefore, the scheduler
can acquaint with the process scheduled immediately,
ensuring the perception in a real-time. If the task was run
before, it is the best time to make statistics. If not, the hard
affinity information (detailed in Section 3.2) can also be
captured.

3.2 Methodology for Capture
Virtualization has brought the concept of Pseudo-

physical Address (PA), regarded as the “continuous”
memory address by Guest OS. Virtual Address (VA)
provided for applications in Guest OS can be mapped to PA.
The real continuous memory, called Machine Address
(MA), is divided into several parts for Guest OS by VMM.
There are two tables for translation between MA and PA:
Machine-to-Physical Translation Table (M2P) and
Physical-to-Machine Translation Table (P2M). This makes
the convenient address translation between Guest OS and
VMM. The page table virtualization, such as MMU para-
virtualization and shadow page, can implement the
translation between VA and MA.

Firstly, we get VA from the register ESP, and compute
VA of the kernel stack pointer. As the pointer of the
process descriptor lies in the bottom of the kernel stack, we
can get the VA of the process descriptor. Then, the VA of
affinity information can be captured easily according to the
offset. Finally, we translate the VA to MA, and convert the
content of MA to the kind that we want.

We propose the Affinity Coefficient (AC) to quantify
CPU Affinity. If the tasks are pinned on VCPU by users
from Guest OS, the value of AC will be the highest. We
can capture this information by reading the affinity bits
called hard affinity in task struct. In addition, the value of
AC will be increased by the operation of tasks in a period.
Times of memory read/write can make AC rise oppositely
to the counts of I/O access. We make a region for the value
of AC. It can be set from 0 to 100. The initial value is 50,
which can be reduced when I/O access happens and added
when reading or writing memory. Once the hard affinity is
detected, it will be set to 100.

3.3 API: Bridging the Semantic Gap
We now get the real-time CPU affinity information by

the methods mentioned in Section 3.1 and 3.2. In order to
inform scheduler timely, we provide an API, which can be
called during scheduling. First, a new struct, Process
Information (PI), is produced. We then add a member of PI
to the VCPU struct. The information captured, AC for
instance, will be written to PI. The API is responsible for
informing information about CPU affinity to DP-scheduler.

Every time the API called, PI will be refreshed to the
VCPU corresponding.

4. The Design of Scheduler

4.1 Scheduling Framework
As Process Information (PI) is the premise of scheduling,

the scheduler should call the API to capture the CPU
affinity of the next running task. In Figure 2, every time the
content of CR3 changes, PI Manager will catch the virtual
address of PI. The part of affinity-aware detector is
responsible for acquiring the CPU affinity information by
translating VA to MA, detailed in Section 3. In the
scheduling period, VCPU monitor first provides VCPU
information modified by API to scheduler. Then, DP-
Scheduling decides whether this VCPU needs pinning.

MemoryDisk . . .

. . .
Guest OS 2

Driver
Domain Guest OS 1 Guest OS n

Core Core

L2 cache

Core Core

L2 cache

Core Core

L2 cache

. . .

PI Manager
Scheduler

VCPU
Monitor

DP-
Scheduling

Affinity-aware
 Detector

API

Figure 2. The architecture of scheduling framework

4.2 DP-Scheduling Model
In this section, we prove that DP-Scheduling

outperforms Credit scheduling by formalizing the model.
The theoretical result also shows the necessity of DP-
Scheduling.

First, we make the following assumptions.
a). The total number of VCPUs from domains is more

than CPU . Actually, it is the most common scenarios.
b).The number of VCPU pinned by DP-Scheduling is

less than CPU at any time. If not, two or more VCPUs can
be pinned on one same CPU in some cases. Cache miss will
happen repetitively according to the principle of rotation,
which leads to bad efficiency

Vi = {Vi1 , Vi2 , … , Vi|Vi |} denotes the set of VCPU from
CPUi, where |Vi| stands for the number of VCPUs. In order
to keep load balance, two cases may happen for CPUi: A
VCPU from Vi , called VCPU_MIip , may migrate to other
CPU; A VCPU from Vj , called VCPU_MIjq , may be
migrated to CPUi. Therefore, if all of VCPU in Vi have a
time slice to execute within a period of time T, the
overhead is as follow:

244

�i=|Vi |*Slot + �(VCPUMI jq
� ,�

*���)

 + � VCPUMI jp
j,q

*Slot – � VCPUMI ip
p

*Slot (i)

We define Slot as one time slice. Cj = {Cj1, Cj2, … , Cj�Vj �}
denotes the cost of migrating VCPU_MIjq to CPUi, such as
cache failure, etc. j can be the index of all CPUs except i.
CPU={CPU1, CPU2, … , CPU|CPU |} indicates the set of CPU,
where |CPU| is the number of CPU. The set of
� VCPUMI ipp will be executed on other CPUs. This is,
� x, p, CPUx 	 CPU, VCPUxp 	 Vx,
 y, q, CPUy 	
CPU, VCPUyq 	 Vy ,VCPUMI xp

� Slot = VCPUMI yq � Slot .
This presents neutralization. Therefore, the overhead of all
CPUs in Credit Scheduler within the period of time T is :

�c = � �i
i

= �|Vi|
i

*Slot + Nc*AVGc(C) (ii)

, where
Nc*AVGc (C)= � �(VCPUMI jq

j,q

� Cjq) (iii)
i

Nc denotes the times of migration in T, and ��� (C) is
the average cost of migration.

Also, the overhead in DP-Scheduling in the same
situation is:

�D = � |Vi |
i

*Slot + ND*AVGD(C) + C(CPUidle) (iv)

 �� denotes the times of migration in T, and ���(C)
is the average cost of migration in DP-Scheduling. As DP-
Scheduling pins VCPU to CPU in some cases (Section 4.3),
CPUidle = {CPU1

idle , CPU2
idle , … , CPU|CPU |

idle } indicates the
cost of CPUs going to IDLE when load balance is broken.
C(�������) stands for the time wasted by IDLE CPUs
when more than one VCPU are waiting in other CPUs.

Therefore, the performance comparison between Credit
and DP-Scheduling is:

� = �c -
�D = �� *���(C) - ��*���(C) - C(�������) (v)

As DP-Scheduling avoids migration in some cases, the
migration is less than Credit Scheduling. That is, �� > ��.
Meanwhile, DP-Scheduling pins the VCPU whose
migration can result in serious cache failure. This cost is
over the average. That is, ���(C) > ���(C) . As
assumption (b) indicates the number of VCPUs pinned is
less than CPUs and assumption (a) indicated the VCPU
number is more than CPU, there always exists one or more
VCPU(s) for migrating when a CPU has no BOOST and
UNDER VCPUs except for no runnable VCPU in other
CPUs. Therefore, C(�������) = 0. Now, we prove that:

� > 0 (vi)
Therefore, the theoretical result presents that DP-

Scheduling has lower overhead than Credit. Also, with the
increasing of difference between ��� (C) and ���(C),
the performance gap between the two schedulers will be

further enlarged. Besides, the result shows that a new
scheduler reducing VCPUs’ migrating cost is needed.

4.3 Basic Scheduling: S’
We present the basic Scheduling, S’, for implementing

dynamic pinning. S’ first calls the API for capturing the
task affinity information from the VCPU next to be run.
Also, we make a threshold of AC (Affinity Coefficient) for
deciding the degree of affinity information. Once AC is
over this threshold, S’ will make the VCPU corresponding
non-migrating, VCPU Y.1 in Figure 3 (B) for instance.
Also, S’ will unpin a VCPU pinned before if the degree of
affinity information is not enough, which means migration
will not bring too many cache misses.

A
Common VCPU Run Queue

B
Pinned-VCPU Run Queue

CPU jCPU i CPU i CPU j

VCPU
Y.1

VCPU
X.1

VCPU
Y.0

VCPU
Y.0

VCPU
X.1

VCPU
Y.1

VCPU
X.0

VCPU
X.0

CPU jCPU i CPU i CPU j

VCPU
Y.1

VCPU
X.1

VCPU
Y.0

VCPU
Y.1

VCPU
X.1

VCPU
Y.0

VCPU
X.0

VCPU
X.0

Common VCPU Pinned VCPUIdle VCPU

Figure 3. Comparison between common and pinned
VCPU run queue.

We compare the situation of VCPU migration between
Credit scheduler and S’ as shown in Figure 3.There is no
runnable VCPU in the local CPU run queue when VCPU
X.0 gets back to the state of Idle. For keeping the load
balance, Credit scheduler (A) migrates VCPU Y.1 from the
head of CPU j’s running queue, whereas S’ (B) migrates
VCPU Y.0 for VCPU Y.1 was pinned. As VCPU Y.1 is to
run a task with high CPU affinity, S’ will avoid cache miss,
especially when CPU i and CPU j are not in one CPU
socket.

CPU jCPU i CPU m CPU n

VCPU
Y.1

VCPU
Y.0

VCPU
Y.3

VCPU
X.1

VCPU
Y.2

Common VCPU

Pinned VCPU

Idle VCPU

VCPU
X.2

VCPU
X.0

VCPU
X.3

CPU jCPU i CPU m CPU n

VCPU
Y.1

VCPU
Y.0

VCPU
Y.3

VCPU
X.1

VCPU
Y.2

VCPU
X.2

VCPU
X.0

VCPU
X.3

Idle CPU
Figure 4. SSituation of load balance broken

However, if too more VCPUs is pinned at one time, the
starvation of some CPUs may occur as shown in Figure 4.
As CPU i has no runnable VCPU, VCPUs from other CPUs
cannot be migrated. CPU i has to turn to IDLE in spite of
some VCPUs probably waiting in other CPU run queue.
Therefore, load balance on SMP is broken, which may
result in lower CPU utilization. S’ solves this problem by
making a policy: VCPUs pinned at one time must be less

245

than CPU, which is also our assumption (b) in theory
model. If the number of VCPU pinned is |CPU| � 1, VCPU
will be not pinned even when high CPU affinity tasks runs.
Another reason for this policy is that two high affinity tasks
taking turns to execute will bring serious cache misses.
However, it is not sufficient, but just an essential condition.
This is why the basic scheduler S’ needs modification as
below.

4.4 DP-Scheduling Algorithm
The basic Scheduling, S’, mainly accomplishes the

dynamic pinning, which makes the migration sequence of
VCPU change. Although it can avoid some negative effects
as shown in Figure 4, load balance cannot be ensured.
Besides, the case in Figure 5 shows that VCPU Y.1 and
VCPU X.0 will take turns to execute, leading to serious
cache failure. So, the measure we adopt should pin VCPU
dispersedly.

CPU jCPU i CPU m CPU n

VCPU
Y.1

VCPU
X.0

VCPU
Y.2

VCPU
Y.0

VCPU
X.3

VCPU
X.2

VCPU
X.1

Common VCPU Pinned VCPU

VCPU
Y.3

Figure 5. The defect of S’

Therefore, we propose a series of strategies as follow:
(a).pin VCPU to the CPU with no pinned VCPU at this

time.
(b).pin VCPU to the CPU with lower workload.
(c).pin VCPU to the local CPU if both (i) and (ii) do not

happen.
(d).do not migrate the VCPU actively when it is

unpinned.
(e).unpin the VCPU with the lowest value of AC when

the number of CPU equals |CPU|.
(f).unpin the VCPU pinned before if it goes to the state

of OVER or IDLE.
(a), (b), (c), and (e) are used for keeping load balance,

which eradicates the case that a CPU goes to IDLE when
many runnable VCPUs are still waiting. (d) aims at
reducing the cost of unnecessary migration. We apply (f) to
reduce the effects on VCPUs need pinning following up for
the total pinning number as shown in (e) cannot be too
much. Besides, this kind of VCPUs can also be pinned
according to its value of AC, when they get back to
UNDER or BOOST.

We implement (b) by computing the average running
time of CPUs respectively in the recent periods. VCPU will
be pinned to the CPU with the lowest value, which means
this CPU goes to the state of IDLE more often. Other

methods in estimating CPU load can also be available:
average or moving average of the amount of one CPU’s
running time, for instance. The policy we selected works
well.
Let � stand for VCPU set from all domains, that is,
� = {VCPU1, VCPU2, … , VCPU|�|}. Let �p be the set of
VCPUs that were pinned, whereas �up is the set of
unpinning VCPUs. Hence, � = �p � �up , and |�| =
 |�p| + |�up |. Besides, let � = {�1, �2, … , �|�|}, where �i
is the value of AC for VCPUi.
For each VCPUi 	 � {

CPUx = VCPUi ->processor;
/*VCPUi has been pinned by its high value of AC*/
If (�i ! THRESHOLD and VCPUi 	 �p) Return;

/*VCPUi with its high value of AC was not pinned */
Else If (�i ! THRESHOLD and VCPUi 	 �up

and VCPUi ->pri > OVER){
peer_cpu = select_peer(VCPUi);
set_unmigrateable(peer_cpu, vcpu);
del(�up , VCPUi);

add(�p, VCPUi);

}
/*Pinned VCPUi contains low value of AC currently
according to strategy (d)/
Else If (�i < "#$%&#'*� and VCPUi 	 �p){

set_migrateable(CPUx, VCPUi);
del(�p, VCPUi);

add(�up , VCPUi);

}
/*The total number of VCPUs should not over
CPU number -1/
If (|�p| == |CPU|)

set_migrateable_by_ac(�p, �up);

}

In the pseudo-code above, select_peer is a function to
achieve (a), (b) and (c), and set_migrateable_by_ac is to
achieve (e). set_unmigrateable and set_migrateable
implement pinning and unpinning vcpu dynamicly.
Threshold is set to 75 through repeated experiments.

DP-Scheduling scheduler is based on Xen VMM, which
provides an interface to schedulers. There is a structure
including pointers to functions that is used to implement
the scheduler [16]. We add DP-Scheduling to the scheduler
set by defining the sched_dps_def as follows.,

struct scheduler sched_dps_def = {
.name = “DP-Scheduling Scheduler”,

246

.opt_name = “dp-scheduling”,

.sched_id = XEN_SCHEDULER_DPS,
…
.do_schedule = dpssched_schedule.
…
}
do_schedule is responsible for scheduling VCPUs. The

codes we wrote are just in do_schedule. Also, we modify
the function do_domctl (in domctl.c) for adding the DP-
Scheduling strategies.

5. Performance Evaluation

5.1 Experimental Platform
Our experimental hardware platform is the IBM

Bladecenter HS21, with two quad-core of Intel Xeon 5405
at 2.0GHZ. Every two cores share 6MB L2 cache. The
server has 4G of RAM.

The server runs the CentOS-5.4 in Domain 0 with Xen
3.4.3 Hypervisor 1

5.2 Benchmarks

. The Guest OS in Domain U is also
CentOS-5.4. Each DomainU is allocated 8 VCPUs, 1G
RAM, 8GB Disk and adopts the bridge network interface
for the interconnection with Dom0 and DomainU.

We select three different types of current mainstream
benchmarks listed in Table 1 to ensure the experiment
results accuracy and convincing. In addition, the MPI
library used is mpich2-1.0 [10].

Table 1. BBenchmarks Overview

Benchmark
Category Code Name Variabl

e Measurement

HPCC STREAM Array
size

Memory
Bandwidth

EPCC OpenMP Micro-
benchmark suite

Thread
Numbe

r
Time

IMB
Sendrecv Messag

e Size
Transfer
Speed Exchange

High Performance Computing Challenge (HPCC) [7] is
a standard set of testing system performance in kinds of
aspects, including CPU speed, network bandwidth, memory
read speed, and network delay, etc. We use STREAM
benchmark to test the speed of memory read. The results
are under different conditions by the size of arrays.

Edinburgh Parallel Computing Centre (EPCC) OpenMP
micro-benchmarks [8] are to test the synchronization and
the operations on cycles as well as arrays. It contains a

1 The reason we do not choose newest version, Xen 4.0.0, is that no stable

Xenoprof patch is supported until now. Besides, the default scheduler in
Xen 3.3.x is as same as in Xen 4.0.0.

series of OpenMP test programs, such as testcrit, testlock,
testorder, etc. We integrate them together to test the overall
performance.

Intel MPI benchmark (IMB) [9] is a set used to test
some important MPI functions. In our experiment, we use
Sendrecv and Exchange in IMB to evaluate the transfer
speed with different schedulers.

5.3 Results and Analysis
We compare the Credit scheduler with DP-Scheduling

scheduler in our experiments. We will run every
benchmark in VM with each scheduler respectively on our
platform, where other configurations are all the same.
Firstly, we run scripts at least 1000 times in each case
though some benchmarks are also executed repeatedly. We
then compute the average value except for some few
abnormal points. The results are as follows.

We run 8 OpenMP threads of STEAM with different
array sizes to fetch the memory bandwidth by adopting
Credit scheduler and DP-Scheduling scheduler respectively.
Each thread works with non-synchronization. The result is
in Figure 6. When the size of arrays is small, total arrays
can be cached in L2 cache. As DP-Scheduling pins the
VCPU running this task to CPUs by strategies proposed in
Section 4.4, it largely guarantees the L2 cache hits.
However, Credit Scheduler migrates VCPUs among CPUs
frequently for keeping load balance, which leads to L2
cache updated constantly. With the increase of arrays size,
the two results become close. But the performance of DP-
Scheduling scheduler is still not below the one of Credit
Scheduler as it also has the load balancing policy.

OpenMP micro-benchmark contains a suite of high
synchronous tasks, where the contention on the critical
resource among threads will happen frequently. As shown
in Figure 7, the performance gap between the two
schedulers is growing with the increase of threads’ number.
On one time, a blind migration can also result in terrible L2
cache failure. On the other time, DP-Scheduling scheduler
reduces the time of waiting for locks obtained by other
thread for it makes VCPUs in warm CPU affinity pin on
different CPU run queues. This will be more obvious when
the number of threads is closed to the total number of
VCPU in VM.

Sendrecv and Exchange, the parallel transfer
benchmarks in IMB, are two different kinds of testing the
transfer speed among threads. Any thread can receive
messages from its left thread and send messages to its right
neighbor in Sendrecv, whereas Exchange makes all threads
send and receive messages from both sides. We create 8
threads as same as VCPU number in VM for both Sendrecv
and Exchange, as shown in Figure 8 and Figure 9. When
Message size is too small, the bottleneck lies in the sending
and receiving message for too many messages are waiting.

When the message size is too large, the size of data
buffer pools is the main factor that determines the transfer
speed. DP-Scheduling scheduler significantly improves the

247

speed in the range of 128 Bytes to 131072 Bytes, where the
CPU speed plays a decisive role. For Credit scheduler,
operations on sending and receiving make VCPUs switch
frequently if two VCPUs running the neighbor threads lie
in same CPU run queue, while DP-Scheduling scheduler
can guarantee the real-time interaction among threads as
well as load balance.

Figure 6. BBandwidth in STREAM benchmark

Figure 7. Running time of OpenMP Micro-

benchmarks

Figure 8. Sendrecv of IMB benchmark
Our benchmarks have a wide coverage among CPU-

bound applications. STREAM is a typical example of
asynchronous multi-thread, Openmp test suite has authority
in high synchronization, and the two benchmarks from
IMB are common use in parallel transfer. All in all, the
experimental results indicate that DP-Scheduling strategy

performs well in numerous CPU-bound tasks. Either
synchronous or asynchronous, DP-Scheduling can
effectively increase CPU utilization by reducing
unnecessary migration.

Figure 9. Exchange of IMB benchmark

6. Related Work

CPU scheduling policy plays a crucial role in
accelerating the performance of VM in virtualization. The
traditional schedulers, such as Credit scheduler and SEDF,
are universal for all kinds of applications. [21] evaluated
the two schedulers with different configurations. In future,
Credit 2 [22] will be added to the Xen tree. It will focus on
the fairness among VM, working well for latency-sensitive
workloads, hyperthreads, and cores power.

There are several classifications for applications, such as
single-thread/multi-threads, synchronization/asynchroniza-
tion, etc. One significant way is to classify them by the
operations both on CPU and I/O, that is, CPU-bound and
I/O-bound applications. Therefore, many schedulers based
on them aim at improving such special applications. The
work in [23] proposed an efficient I/O virtualization for
high end systems, by offloading the virtualization
functionality from the Guest OS onto device. [1] proposed
a communication-aware CPU scheduler in Xen by
modifying the SEDF scheduler to improve the throughput
for I/O-bound applications. [24] provided a policy, called
VMM-bypass I/O, for improving I/O performance. It
reduces the I/O response time by carrying I/O operations
from VMM to Guest OS. [6] provided a task-aware virtual
machine scheduling mechanism, where partial boosting is
introduced to thin the task-level granularity. [20] presented
a task-aware based co-scheduling scheduler to meet the
need of concurrent application in virtual SMP system. A
hybrid scheduling framework [3] was presented to reduce
the CPU time when the system workload was the
concurrent applications. [2] made Xen friendlier to the soft
real-time tasks by modifying Credit scheduler, which
makes soft real-time tasks run well in non-preemptive
scheduler. This method provides a novel thinking in
supporting soft real-time tasks in VMM.

There are also some performance monitors [26, 27, 28],

248

which configure the schedulers to reach high performance
by the information captured. [4] analyzed the performance
of a server consolidation benchmark on a multi-core
platform of Xen virtual environment. CPI (Cycles Per
Instruction) and L2 cache misses per instruction are studied
to prove the advantage of larger caches.

7. Conclusion
In this paper, we develop a novel approach for

improving the utilization of CPU resource by reducing both
cache miss for CPU-bound tasks and waiting time for
synchronous threads. The solution lies in the hypervisor
scheduler. Firstly, we compare the cache miss between
non-virtualization and virtualization, and do analysis on it.
Then, we propose a method of capturing CPU affinity to
bridge the gap between Guest OS and VMM, and provide
an API for the new scheduler, called DP-Scheduling
scheduler based on Xen Credit Scheduler. Depending on
the information from API, DP-Scheduling scheduler will
pin or unpin the VCPUs from CPU dynamically as well as
keeping load balance. We apply a series of strategies for
this scheduler in order to make VCPU run in CPU
dispersedly, which can bring high cache hits. The
experiment designed contains plenty kinds of CPU-bound
applications. And the results demonstrate that affinity-
aware DP-Scheduling scheduler can promote the
performance of the virtual machine system efficiently.

8. ACKNOWLEDGMENTS
This work is supported by the National Science Foundation of
China under Grant No. 61073076, and the National High
Technology Development 863 Program of China under Grant No.
2007AA01Z118.

9. References
[1] S. Govindan, A. Nath, A. Das, B. Urgaonkar, and A.
Sivasubramaniam. Xen and Co.: Communication-aware cpu
scheduling for consolidated Xen-based hosting platforms.
Proceedings of the 3rd international conference on Virtual
execution environments (VEE), 2007, pages 126-136
[2] Min Lee, A. S. Krishnakumar, P. Krishnan, Navjot Singh,
Shalini Yajnik. Supporting Soft Real-Time Tasks in the Xen
Hypervisor. VEE’09, 2010, pages 97-108.
[3] Chuliang Weng, Zhigang Wang, Minglu Li, and Xinda
Lu.The Hybrid Scheduling Framework for Virtual Machine
Systems. VEE’09, 2009, pages 111-120.
[4] P. Apparao, R. Iyer, X. Zhang, D. Newell, and T.Adelmeyer.
Characterization & analysis of a server consolidation
benchmark.VEE ’08, 2008, pages 21-30.
[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of
Virtualization. SOSP’2003, 2003, pages 164-177.
[6] Hwanju Kim Hyeontaek Lim Jinkyu Jeong Heeseung Jo
Joowon Lee1. Task-aware Virtual Machine Scheduling for I/O
Performance. VEE ’09, 2009, pages 101-110.
[7] http://icl.cs.utk.edu/hpcc/.

[8] http://www.epcc.ed.ac.uk/research/openmpbench.
[9] Intel Corporation Document. Intel MPI Benchmarks: User
Guide and Methodology Description.
[10] MPICH2, ttp://www.mcs.anl.gov/research/projects/mpich2/.
[11] Amazon Elastic Compute Cloud (EC2). ws.amazon.com/ec2.
[12] A Gavrilovska, S Kumar, H Raj, K Schwan, V Gupta, R
Nathuji, R Niranjan, A Ranadive, P Saraiya. High-Performance
Hypervisor Architectures:Virtualization in HPC Systems.
HPCVirt’07, 2007.
[13] Adit Ranadive, Mukil Kesavan, Ada Gavrilovska, Karsten
Schwan. Performance Implications of Virtualizing Multicore
Cluster Machines. HPCVirt’08, 2008.
[14] Darren Abramson, Jeff Jackson. Intel Virtualization
Technology for Directed I/O. Intel Technology Journal. 2006.
[15] AMD Virtualization Website: Introducing AMD
virtualization, 2006. http://www.amd.com/virtualization.
[16] David Chisnall. The Definitive Guide to the Xen Hypervisor.
Prentice hall, 2007.
[17] S. T. Jones. Implicit operating system awareness in a virtual
machine monitor. PhD thesis, Madison, WI, USA, 2007.
[18] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Antfarm: Tracking processes in a virtual machine
environment. Proc. USENIX Annual Technical Conference, 2006.
[19] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Geiger:Monitoring the buffer cache in a virtual machine
environment. Proc. ASPLOS-XII, 2006, pages 14-24.
[20] Yuebin Bai, Cong Xu, Zhi Li. Task-aware based co-
scheduling for virtual machine system. The 26th Symposium On
Applied Computing, 2010, pages 181-188.
[21] D. Ongaro, A. Cox, and S. Rixner. Scheduling I/O in virtual
machine monitors. VEE’08, 2008, pages 1-10.
[22] George W. Dunlap. Scheduler development update.
[23] G. Liao, D. Guo, L. Bhuyan, and S. R. King. Software
techniques to improve virtualized IO performance on multi-core.
ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, 2008, pages 161-170.
[24] J. Liu, W. Huang, B. Abali, and D. Panda. High
performance vmm-bypass I/O in virtual machines. Proceedings of
USENIX ’06 Annual Technical Conference, 2006.
[25] Himanshu Raj, Karsten Schwan. High Performance and
Scalable I/O Virtualization via Self-Virtualized Devices.
HPDC’07, 2007, pages 179-188.
[26] L. Cherkasova and R. Gardner. Measuring CPU overhead
for I/O processing in the Xen virtual machine monitor.
Proceedings of the USENIX Annual Technical Conference, 2005.
[27] A. Menon, J. Santos, Y. Turner, G. Janakiraman, and W.
Zwaenepoel. Diagnosing performance: Overheads in the Xen
virtual machine environment. VEE’05, 2005, pages 13-23.
[28] D. Gupta, R. Gardner, and L. Cherkasovah. XenMon:
QoSmonitoring and performance profiling tool. Technical Report
HPL-2005-187, HP Labs, 2005
[29] http://www.vmware.com/products/esx/

249

