
XenMon: QoS Monitoring and Performance Profiling Tool

Performance Study: How Much CPU Needs to Be Allocated to DomO

for Efficient Support of Web Server Applications?

Diwaker Gupta, Rob Gardner, Ludmila Cherkasova
Hewlett-Packard Laboratories

1501 Page Mill Road, Palo Alto, CA 94303
e-mail: dgupta@cs.ucsd.edu ∗, rob.gardner@hp.com, cherkasova@hpl.hp.com

Abstract. The goal of this short paper is twofold: 1) it briefly describes a new performance
monitoring tool, XenMon, that we built for the Xen-based virtual environment, and 2) it
presents a performance case study that demonstrates and explains how different metrics re-
ported by XenMon can be used in gaining insight into an application’s performance and its
resource usage/requirements, especially in the case of I/O intensive applications.

1 Introduction

Virtual Machine Monitors (VMMs) are gaining popularity in enterprise environments as a software-based
solution for building shared hardware infrastructures via virtualization. Virtualization technology is a
key component in creating a more agile, dynamic infrastructure. For large enterprises it offers an ideal
solution for server and application consolidation in an on-demand utility. Forrester Research estimates
that businesses generally end up using somewhere between 8 and 20 percent of the server capacity they
have purchased. Virtualization technology will help to achieve greater system utilization while lowering
total cost of ownership and responding more effectively to changing business conditions.

As virtual machines enter the mainstream and are deployed in larger numbers, manageability, automation,
accurate resource accounting, performance isolation, QoS-aware resource allocation, and billing will be
the real differentiators to help customers create dynamic infrastructures. The Xen virtual machine
monitor [1, 2] is Open Source software that allows multiple operating systems to execute concurrently
and efficiently on commodity x86 hardware 1.

For supporting the resource allocation and management functions, we implemented an accurate monitor-
ing and performance profiling infrastructure, called XenMon, that reports the resource usage of different
VMs and provides an additional insight into shared resource access and resource scheduling in Xen.

Such a monitoring system is broadly needed for assistance in billing and for a wide variety of manage-
ment tasks such as: i) support for policy-based resource allocation; ii) admission control of new VMs;
iii) support for VMs migration; iv) QoS provisioning of VMs. This resource monitoring infrastructure
forms a foundation for higher-level value-added services with QoS guarantees.

This paper briefly describes the new performance monitoring tool, XenMon, that we built for Xen, and
presents a performance case study that demonstrates and explains how different metrics reported by Xen-

∗Diwaker Gupta worked at HPLabs during the summer of 2005, and currently is back at UCSD to finish his PhD.
1In this paper, we do not describe the Xen architecture. For description we refer readers to the original Xen papers [1, 2].

1

Mon can be used in gaining insight into an application’s performance and its resource usage/requirements,
especially in the case of I/O intensive applications.

Our performance study looks at the question: how sensitive is the performance of I/O intensive appli-
cations (in particular a web server) to the amount of CPU allocated to Dom0 where Dom0 is a domain
that hosts the device drivers and that is a critical service domain for I/O intensive applications .

This paper is organized as follows. Sections 2 and 3 briefly present the architecture of XenMon and the
main metrics reported by XenMon. Sections 4 and 5 describe the experimental setup and application used
in our performance study and the four resource allocation configurations which are used in the study.
Sections 6 - 8 in a step-by-step manner present reported metrics for all four configurations, explain
their meanings, and interpret them with respect to application behavior and performance. Appendix A
contains the “README” file for XenMon.

2 XenMon

In this section, we briefly describe the architecture of XenMon. There are three main components in
XenMon (Figure 1):

• xentrace: this is a light weight event generation facility present in Xen. Using xentrace it is possible
to raise events at arbitrary control points in the hypervisor. Xentrace allows some attributes to be
associated with each event (for instance, for a “domain scheduled” event, the associated attributes
might be the ID of the scheduled domain and the timestamp of the event).

• xenbaked: Note that the event stream generated by xentrace is not very useful by itself. Xenbaked
is a user-space process that catches events generated by xentrace and processes them into mean-
ingful information. For instance, we might collate and aggregate domain sleep and wake events to
determine the time for which a domain was blocked in a given interval.

• xenmon: this is the front-end for displaying and logging the data.

Figure 1: XenMon Architecture

We would like to emphasize some salient features of this architecture:

• xenbaked is highly configurable – one can specify how many samples to record per second, how
many seconds of history should be kept, the sampling frequency etc. Further, xenbaked exports the
processed data in a language neutral manner so that front ends can be written in any language.
Currently this is done via a read only shared memory region, which means that multiple front-ends
might read and display the data using the same xenbaked instance. We are currently exploring
making this interface network transparent via XML-RPC.

2

• xenmon is written in python which makes it very portable. Currently xenmon provides a curses
based front end for online viewing of data, as well as logging to files for post processing.

• xenmon is low overhead – we observe a maximum of 1-2% overhead in our experiments. Since the
data exposed by xenbaked is language neutral, it is very easy to write faster frontends (say in C) if
this overhead is unacceptable.

3 Metrics

XenMon reports a variety of metrics that are accumulated over the i) execution period (time interval
that domain was scheduled to use CPU); ii) last second, and iii) 10 seconds.

There is a group of metrics that present how the time is spent by each domain:

• CPU usage – shows a percentage of time (for example, over 1 second) when a domain used CPU;

• blocked time – reflects a percentage of time a domain spent while blocked on some I/O event, i.e. a
domain was not on the run queue;

• waiting time – shows a percentage of time a domain spent waiting on the run queue to be scheduled
for CPU.

These three main metrics completely cover how time is spent by a domain.

XenMon reports a metric execution count that reflects how often a domain has been scheduled on a CPU
during the measurement period (e.g. 1 second). When a reading of this metric is combined with CPU
usage/waiting time per execution period – it provides an insight into the scheduler behavior.

For an I/O intensive application, XenMon provides I/O count metric that is a rough measure of I/O
requested by the domain. It is the number of memory page exchanges (or page ”flips”) between a domain
and Dom0. The number of pages exchanged may not accurately reflect the number of bytes transferred
to/from a domain due to partial pages being used by the network protocols, etc. But it does give a good
sense of the magnitude of I/O being requested by a domain. We will explain this metric in more detail
in Section 7.

4 Experimental Setup and Four Configurations Under Study

In the initial design [1], Xen itself contained device driver code and provided safe shared virtual device
access. The support of a sufficiently wide variety of devices is a tremendous development effort for every
OS project. In a later paper [2], the Xen team proposed a new architecture used in the latest release
of Xen which allows unmodified device drivers to be hosted and executed in isolated “driver domains”
which, in essence, are driver-specific virtual machines.

There is an initial domain, called Domain0 (which we denote Dom0), that is created at boot time and
which is permitted to use the control interface. The control interface provides the ability to create and
terminate other domains, control the CPU scheduling parameters and resource allocation policies, etc.
Dom0 also may host unmodified Linux device drivers and play the role of a driver domain. In our
experimental setup, we use Dom0 as a driver domain as shown in FigureXen2.

Thus, for I/O intensive applications, CPU usage has two components: CPU consumed by the guest
virtual machine (VM), where the application resides, and CPU consumed by Dom0 that incorporates
device driver and performs I/O processing on behalf of the guest domain. We performed a sensitivity
study of how web server performance depends on the amount of CPU allocated to Dom0.

3

Figure 2: Experimental Setup.

In the performance study below, we used a 1-CPU HP x4000 Workstation with a 1.7 GHz Intel Xeon
processor, 2 GB RAM. We ran Xen 3.0. Dom1 ran Apache HTTP server version 2.0.40. We used the
httperf tool [3] for sending the client requests that retrieve 10 KB files. The httperf tool provides a
flexible facility for generating various HTTP workloads and for measuring server performance. In order
to measure the request throughput of a web server, we invoke httperf on the client machine, which sends
requests to the server at a fixed rate and measures the rate at which replies arrive. We run the tests with
monotonically increasing request rates, until we see that the reply rate levels off and the server becomes
saturated, i.e., it is operating at its full capacity. In our experiments, the http client machine and web
server are connected by a 1 Gbit/s network.

Xen 3.0 was booted with the Borrowed Virtual Time scheduler (BVT) as a CPU scheduler. BVT provides
proportional fair share CPU scheduling based on weights. Each runnable domain receives a share of CPU
in proportion to its weight. Current BVT implementation is a work conserving scheduler, i.e. if one
domain has “no work to do” then the other domain can get the entire CPU for its execution (independent
of the domain’s weight). Thus, in the current BVT scheduler, when two different domains are assigned
equal weights it does not mean that each of them will get 50% of CPU resources. It only means that
these domains are entitled to get the same amount of CPU when both of them have work to do.

We aim to answer the question: how sensitive is web server performance to different amounts of CPU
allocated to Dom0 that hosts device drivers.

We designed 4 different configurations where we varied the CPU amount allocated to Dom0 relatively to
Dom1:

• Conf 0.5: Dom0 is assigned a weight of 20, and Dom1 is assigned a weight of 10. This means that
Dom0 is allocated half of the CPU share compared to Dom1 CPU share, i.e. Dom0 = 0.5×Dom1

in CPU shares;

• Conf Equal: Dom0 and Dom1 are assigned equal weights of 10 to get the same CPU share;

• Conf 2: Dom0 is assigned a weight of 5, and Dom1 is assigned a weight of 10. This means that
that Dom0 is allocated twice as much CPU compared to Dom1 CPU share, i.e. Dom0 = 2×Dom1

in CPU shares;

• Conf 10: Dom0 is assigned a weight of 1, and Dom1 is assigned a weight of 10. This means
that that Dom0 is allocated ten times as much CPU compared to Dom1 CPU share, i.e. Dom0 =
10 × Dom1 in CPU shares.

4

5 Web Server Performance

The web server performance is measured as a maximum achievable number of connections per second
supported by a server when retrieving files of various sizes.

Figure 3 a) shows achievable web server throughput under the four CPU allocation configurations de-
scribed above. The results reflect a specific trend in a web server performance under the increased CPU
share to Dom0.

a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000 1200 1400 1600

T
hr

ou
gh

pu
t (

re
q/

se
c)

Load (req/sec)

Web Server Throughput

 Conf_0.5
 Conf_Equal

Conf_2
 Conf_10

b)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 200 400 600 800 1000 1200 1400 1600

R
es

po
ns

e
(m

se
c)

Load (req/sec)

Response Time

 Conf_0.5
 Conf_Equal

Conf_2
 Conf_10

Figure 3: a) Web server throughput; b) Web server response time.

Interestingly enough, web server throughput is best under configuration Conf 0.5 when Dom0 is allocated
a half amount of CPU that is allocated to Dom1. Under this configuration web server throughput reaches
1380 request/sec.

The common trend observed in Figures 3 a) is that a larger CPU share allocated to Dom0 leads to worse
web server throughput: under configuration Conf Equal web server throughput is 1200 request/sec, for
configuration Conf 2 web server throughput is 980 request/sec, and it reaches only 700 request/sec under
configuration Conf 10.

Web server response time for the four configurations is shown in Figure 3 b). It supports the same trend:
web server response is best under configuration Conf 0.5 when Dom0 is allocated half the amount of
CPU that is allocated to Dom1.

It seems to be counterintuitive. Why does a higher CPU share allocated to Dom0 lead to worse web
server performance? How can it be explained?

6 Where Does Time Go? Three Main XenMon Metrics: CPU Usage, Blocked
and Waiting Time

First of all, let us see how CPU usage is impacted by different weight assignments to Dom0. Figure 4
shows CPU utilization for Dom0 and Dom1 under the four different configurations. CPU usage increases
for both domains under increased load to a web server.

Figure 4 a) shows that under configuration Conf 0.5 and heavy load to a web server, Dom0 uses 30% of
CPU while Dom1 gets 68% of CPU (there is about 2% CPU overhead due to XenMon tool usage). It is
the only configuration where the targeted CPU allocation (1:2 ratio for Dom0 : Dom1 CPU allocation
ratio) is really achieved.

For the other configurations, with assignment of increased CPU share to Dom0, we can see that CPU

5

a)

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000 1200 1400 1600

C
P

U
 U

til
iz

at
io

n
(%

)

Load (req/sec)

CPU Utilization: Conf_0.5

 Dom0
 Dom1

b)

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000 1200 1400 1600

C
P

U
 U

til
iz

at
io

n
(%

)

Load (req/sec)

CPU Utilization: Conf_Equal

 Dom0
 Dom1

c)

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000 1200 1400 1600

C
P

U
 U

til
iz

at
io

n
(%

)

Load (req/sec)

CPU Utilization: Conf_2

 Dom0
 Dom1

d)

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000 1200 1400 1600

C
P

U
 U

til
iz

at
io

n
(%

)

Load (req/sec)

CPU Utilization: Conf_10

 Dom0
 Dom1

Figure 4: CPU Utilization under BVT scheduler with different weights: a) Conf 0.5; b) Conf Equal; c) Conf 2; d) Conf 10.

usage by Dom0 increases as shown in Figures 4 b), c) and d), but it does not go above 45% for configuration
Conf 10, where Dom0 is allocated ten times as much CPU compared to Dom1 CPU share. At the same
time, this increased CPU consumption by Dom0 leave less CPU available to Dom1: under configuration
Conf 10, Dom1 gets only 55% of CPU compared to 68% of CPU used by Dom1 in configuration Conf 0.5.
Clearly, this redistribution in CPU usage provides a first insight why web server throughput decreases so
dramatically under increased CPU allocation to Dom0.

Figure 5 shows percentage of blocked time for Dom0 and Dom1 under the four different configurations.
The blocked time metric represents a percentage of time when a domain is blocked on I/O events.

Figure 5 a) shows the percentage of blocked time by Dom0 and Dom1 under configuration Conf 0.5. It
is the only configuration in the set of four configurations under study, where Dom1 has a higher blocked
time percentage than Dom0. Intuitively, in configuration Conf 0.5, Dom1 is typically blocked as much
as Dom0 waiting on the I/O events to be processed by Dom0. It is a logical scenario for an I/O intensive
and interrupt driven application like web server.

What is happening in the system under increased CPU allocation to Dom0?

As shown in Figures 5 b), c) and d), under increased CPU allocation to Dom0, blocked time of Dom1

becomes smaller: Dom0 services interrupts much faster and Dom1 running a web server seldomly blocks
on I/O. Under higher CPU allocation to Dom0, the blocked time for Dom0 increased significantly.

It seems a bit strange at first glance, but a complementary waiting time metric discussed below helps in
understanding the system behavior in more detail.

6

a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 200 400 600 800 1000 1200 1400 1600

B
lo

ck
ed

 T
im

e
(%

)

Load (req/sec)

Blocked Time: Conf_0.5

 Dom0
 Dom1

b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 200 400 600 800 1000 1200 1400 1600

B
lo

ck
ed

 T
im

e
(%

)

Load (req/sec)

Blocked Time: Conf_Equal

 Dom0
 Dom1

c)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 200 400 600 800 1000 1200 1400 1600

B
lo

ck
ed

 T
im

e
(%

)

Load (req/sec)

Blocked Time: Conf_2

 Dom0
 Dom1

d)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 200 400 600 800 1000 1200 1400 1600

B
lo

ck
ed

 T
im

e
(%

)

Load (req/sec)

Blocked Time: Conf_10

 Dom0
 Dom1

Figure 5: Blocked Time under BVT scheduler with different weights: a) Conf 0.5; b) Conf Equal; c) Conf 2; d) Conf 10.

Figure 6 shows the percentage of waiting time for Dom0 and Dom1 under the four different configurations.
The waiting time metric represents a percentage of time when a domain becomes runnable and is waiting
for CPU on the run queue.

Figure 6 a) shows the percentage of waiting time for Dom0 and Dom1 under configuration Conf 0.5
Interestingly, it is the only configuration in the set of four configurations under study where Dom0 has a
significantly higher waiting time than Dom1.

In configuration Conf Equal shown in Figure 6 b), waiting time for Dom0 decreases while waiting time
for Dom1 is getting larger. However, for most of the points, waiting time for Dom0 is still higher than
for Dom1.

For configurations Conf 2 and Conf 10, the situation changes dramatically: under Conf 10, waiting time
for Dom0 is only about 2% while for Dom1 it increases to 40%. Thus, when Dom0 is allocated a higher
CPU share compared to Dom1, it results that Dom0 experiences a much shorter waiting time in the run
queue and faster access to CPU.

Here, it might be worthwhile to discuss some additional details of how the BVT scheduler operates.
The classic BVT scheduler is based on the virtual time concept, dispatching the runnable thread/virtual
machine with the earliest virtual time for CPU access first.

Each runnable domain Domi receives a share of CPU in proportion to its weight weighti. To achieve this,
the virtual time of the currently running Domi is incremented by its running time divided by weighti.
This way, the virtual time of domains with higher CPU allocations increases more slowly, and such a
domain has a higher chances in getting CPU allocated to it because its virtual time is lower.

7

a)

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000 1200 1400 1600

W
ai

tin
g

T
im

e:
 (

%
)

Load (req/sec)

Waiting Time: Conf_0.5

 Dom0
 Dom1

b)

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000 1200 1400 1600

W
ai

tin
g

T
im

e:
 (

%
)

Load (req/sec)

Waiting Time: Conf_Equal

 Dom0
 Dom1

c)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 200 400 600 800 1000 1200 1400 1600

W
ai

tin
g

T
im

e:
 (

%
)

Load (req/sec)

Waiting Time: Conf_2

 Dom0
 Dom1

d)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 200 400 600 800 1000 1200 1400 1600

W
ai

tin
g

T
im

e:
 (

%
)

Load (req/sec)

Waiting Time: Conf_10

 Dom0
 Dom1

Figure 6: Waiting Time under BVT scheduler with different weights: a) Conf 0.5; b) Conf Equal; c) Conf 2; d) Conf 10.

This explains how Dom0 gets “priority” treatment under configuration Conf 10, where a high CPU share
allocated to Dom0 results in a smaller virtual time for Dom0 and its ability to get CPU faster once it is
on the run queue. In its own turn, it results that Dom0 gets served quickly, and after that it gets blocked
on the next I/O event. This is why with the higher CPU allocation to Dom0, we have seen an increased
blocked time for Dom0 (see Figures 5 d)).

For Dom1, the situation is somewhat reversed. When Dom0 is allocated a higher CPU share than Dom1,
Dom1 gets blocked on I/O events less and less often (since they are processed by Dom0 in faster manner).
In fact, under heavier load Dom1 never gets blocked and always has work to do. We can see this through
the increased waiting time metric. Practically, under heavier load, the time for Dom1 consists of two
components: waiting time in the run queue and CPU processing (run) time.

Now, we have all the components showing how the time is spent by each domain in the four configurations
under study. However, it is still unclear why web server throughput suffers so much under configurations
where Dom0 is allocated a higher CPU share compared to Dom1, and why web server performance is so
drastically better under configuration Conf 0.5.

The following section helps to get a good insight of the details of I/O processing under the four configu-
rations in our study.

7 How Efficient is I/O Processing: XenMon I/O Count Metric

A few words about I/O support in Xen. Devices can be shared among guest operating systems. To make
this sharing work, the privileged guest hosting the device driver (e.g. Domain0) and the unprivileged guest

8

domain that wishes to access the device are connected together through virtual device interfaces using
device channels [2]. Xen exposes a set of clean and simple device abstractions. I/O data is transferred to
and from each domain via Xen, using shared-memory, asynchronous buffer descriptor rings. In order to
avoid the overhead of copying I/O data to/from the guest virtual machine, Xen implements the “page-
flipping” technique, where the memory page containing the I/O data in the driver domain is exchanged
with an unused page provided by the guest OS.

Thus, in order to account for different I/O related activities in Dom0 (that “hosts” the unmodified device
drivers), XenMon observes the memory page exchanges between Dom0 and Domi. XenMon computes
two related metrics: it measures the number of memory page exchanges performed per second,and it
computes an average number of memory page exchanges performed per execution period (averaging
it over one second). For brevity, XenMon uses the term I/O count for the number of memory page
exchanges.

Figure 7 a) shows the I/O count per second between Dom0 and Dom1. It clearly reflects a trend that
under increased CPU allocation to Dom0 the overall I/O count per second decreases.

a)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 200 400 600 800 1000 1200 1400 1600

I/O
 c

ou
nt

/s
ec

Load (req/sec)

I/O count/sec

Conf_0.5
Conf_Equal

Conf_2
Conf_10

b)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600

I/O
 c

ou
nt

/e
x

Load (req/sec)

I/O count/ex

Conf_0.5
Conf_Equal

Conf_2
Conf_10

Figure 7: a) I/O count (memory page flips) per second; b) I/O count (memory page flips) per execution period.

Figure 7 b) shows the I/O count between Dom0 and Dom1 per execution period in Dom0. This figure
offers a very interesting explanation of what happens in the system under increased CPU allocation
to Dom0. In configuration Conf 10, there are fewer than 1.4 memory page exchanges per execution
period on average. Such behavior persists even when the web server is experiencing a heavy load.
Practically, it means that Dom0 is scheduled for CPU processing on each interrupt! In such a way, the
interrupt processing becomes very expensive and has a high processing cost since it includes domain
switch overhead. This leads to a lower overall I/O count per second between Dom0 and Dom1. Under
configuration Conf 10, I/O count per second is only half of I/O count under configuration Conf 0.5. This
observation is highly correlated with trends in web server throughput: under configuration Conf 10, web
server throughput is 700 requests per second, that is half of web server throughput under configuration
Conf 0.5, where web server throughput reaches 1380 requests per second.

Under configuration Conf 0.5, the interrupt processing is strikingly efficient: there are up to 100 memory
page exchanges per execution period when a web server is under heavy load. Such performance is tightly
coupled with BVT scheduling decisions under different weight assignments to Dom0. We discuss this
phenomena in the next section.

9

8 Scheduling Mystery: Number of Execution Periods and Their Duration
Reported by XenMon

Figure 8 shows the number of execution periods under the four different configurations.

a)
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 200 400 600 800 1000 1200 1400 1600

E
xe

cu
tio

n
co

un
ts

/s
ec

Load (req/sec)

Execution Counts/sec: Conf_0.5

 Dom0
 Dom1

b)
 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 200 400 600 800 1000 1200 1400 1600

E
xe

cu
tio

n
co

un
ts

/s
ec

Load (req/sec)

Execution Counts/sec: Conf_Equal

 Dom0
 Dom1

c)
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 200 400 600 800 1000 1200 1400 1600

E
xe

cu
tio

n
co

un
ts

/s
ec

Load (req/sec)

Execution Counts/sec: Conf_2

 Dom0
 Dom1

d)
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 200 400 600 800 1000 1200 1400 1600

E
xe

cu
tio

n
co

un
ts

/s
ec

Load (req/sec)

Execution Counts/sec: Conf_10

 Dom0
 Dom1

Figure 8: Number of execution periods per second under BVT scheduler with different weights: a) Conf 0.5; b) Conf Equal;
c) Conf 2; d) Conf 10.

Let us more carefully analyze the XenMon results for configuration Conf 0.5 shown in Figure 8 a). Under
a relatively light load to the web server, there is a high number (up to 7,000 - 8,000) of execution periods
per second for both domains Dom0 and Dom1.

Figure 9 a) shows the average CPU time received per execution period under configuration Conf 0.5.
Practically, this metric reflects the average duration of each execution period. In particular, XenMon
reveals that under a light load to the web server (less than or equal to 800 requests per second), there
is a high number of “short” execution periods per second with an average duration of less than 60
microseconds.

However, under heavier load to the web server, in configuration Conf 0.5, there is efficient “aggregation”
of interrupts and “work to do” in Dom0, that results in an efficient aggregation of “work to do” for
Dom1. This leads to a much smaller number (around 400) of “longer” execution periods with an average
duration of 1,000 microseconds for Dom0 and 2,000 microseconds for Dom1. Clearly, over such longer
execution periods, Dom0 is capable of processing an order of magnitude more I/O interrupts with much
less processing cost. Under this configuration, the targeted CPU allocation (1:2 ratio for Dom0 : Dom1

CPU allocation ratio) is truly achieved.

As for configurations with increased CPU allocation to Dom0 such as Conf 2 and Conf 10, XenMon
reveals that even under heavy load to the web server, these configurations are causing a high number
(10,000 -12,000) of “short” execution periods with an average duration of 35-50 microseconds as shown

10

a)
 0

 500

 1000

 1500

 2000

 2500

 0 200 400 600 800 1000 1200 1400 1600

G
ot

te
n

T
im

e/
ex

ec
 p

er
io

d
(u

s)

Load (req/sec)

Gotten Time/exec period: Conf_0.5

 Dom0
 Dom1

b)
 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000 1200 1400 1600

G
ot

te
n

T
im

e/
ex

ec
 p

er
io

d
(u

s)

Load (req/sec)

Gotten Time/exec period: Conf_Equal

 Dom0
 Dom1

c)
 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000 1200 1400 1600

G
ot

te
n

T
im

e/
ex

ec
 p

er
io

d
(u

s)

Load (req/sec)

Gotten Time/exec period: Conf_2

 Dom0
 Dom1

d)
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 200 400 600 800 1000 1200 1400 1600

G
ot

te
n

T
im

e/
ex

ec
 p

er
io

d
(u

s)

Load (req/sec)

Gotten Time/exec period: Conf_10

 Dom0
 Dom1

Figure 9: Gotten time per execution period under BVT scheduler with different weights: a) Conf 0.5; b) Conf Equal; c)
Conf 2; d) Conf 10.

in Figures 8 c), d) and Figures 9 c), d). Such frequent domain switches for CPU processing results in
high overhead for I/O processing and leads to poor application performance.

9 Conclusion

In this short paper, we described XenMon’s monitoring and profiling capabilities that can be used in
gaining insight into an application’s performance and its resource usage/requirements (especially, in the
case of I/O intensive applications). We performed a sensitivity study of web server performance based
on the amount of CPU allocated to Dom0. The web server exhibited its best performance when the ratio
of CPU share of Dom0 to Dom1 was set to 1 : 2. Surprisingly, with increased CPU allocation to Dom0,
web server performance decreased significantly.

XenMon helped in revealing the system behavior and in getting insight into how I/O processing impacts
the application performance.

We believe that XenMon with its profiling capabilities at the level of execution periods will also be useful
in understanding the benefits and shortcomings of different CPU schedulers available in Xen.

10 References

[1] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield, P. Barham, and R.
Neugebauer. Xen and the Art of Virtualization. Proc. of ACM SOSP, October 2003.

[2] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, M. Williamson. Reconstructing I/O. Tech.
Report, UCAM-CL-TR-596, August 2004.

[3] D. Mosberger, T. Jin. Httperf—A Tool for Measuring Web Server Performance. Proc. of Workshop
on Internet Server Performance, 1998.

11

A README file for XenMon

XenMon: Xen Performance Monitor

The XenMon tool makes use of the existing xen tracing feature to provide fine
grained reporting of various domain related metrics. It should be stressed that
the xenmon.py script included here is just an example of the data that may be
displayed. The xenbake demon keeps a large amount of history in a shared memory
area that may be accessed by tools such as XenMon.

For each domain, XenMon reports various metrics. One part of the display is a
group of metrics that have been accumulated over the last second, while another
part of the display shows data measured over 10 seconds. Other measurement
intervals are possible, but we have just chosen 1s and 10s as an example.

Execution Count

o The number of times that a domain was scheduled to run (ie, dispatched) over
the measurement interval

CPU usage

o Total time used over the measurement interval
o Usage expressed as a percentage of the measurement interval
o Average cpu time used during each execution of the domain

Waiting time

This is how much time the domain spent waiting to run, or put another way, the
amount of time the domain spent in the "runnable" state (or on the run queue)
but not actually running. XenMon displays:

o Total time waiting over the measurement interval
o Wait time expressed as a percentage of the measurement interval
o Average waiting time for each execution of the domain

Blocked time

This is how much time the domain spent blocked (or sleeping); Put another way,
the amount of time the domain spent not needing/wanting the cpu because it was
waiting for some event (ie, I/O). XenMon reports:

o Total time blocked over the measurement interval
o Blocked time expressed as a percentage of the measurement interval
o Blocked time per I/O (see I/O count below)

12

Allocation time

This is how much cpu time was allocated to the domain by the scheduler; This is
distinct from cpu usage since the "time slice" given to a domain is frequently
cut short for one reason or another, ie, the domain requests I/O and blocks.
XenMon reports:

o Average allocation time per execution (ie, time slice)
o Min and Max allocation times

I/O Count

This is a rough measure of I/O requested by the domain. The number of page
exchanges (or page "flips") between the domain and dom0 are counted. The
number of pages exchanged may not accurately reflect the number of bytes
transferred to/from a domain due to partial pages being used by the network
protocols, etc. But it does give a good sense of the magnitude of I/O being
requested by a domain. XenMon reports:

o Total number of page exchanges during the measurement interval
o Average number of page exchanges per execution of the domain

Usage Notes and issues

- Start XenMon by simply running xenmon.py; The xenbake demon is started and
stopped automatically by XenMon.

- To see the various options for XenMon, run xenmon.py -h. Ditto for xenbaked
- XenMon also has an option (-n) to output log data to a file instead of the
curses interface

- NDOMAINS is defined to be 32, but can be changed by recompiling xenbaked
- xenmon.py appears to create 1-2% cpu overhead; Part of this is just the
overhead of the python interpreter. Part of it may be the number of trace
records being generated. The number of trace records generated can be
limited by setting the trace mask (with a dom0 Op), which controls which
events cause a trace record to be emitted.

- To exit XenMon, type ’q’
- To cycle the display to other physical cpu’s, type ’c’

Future Work

o RPC interface to allow external entities to programmatically access processed data
o I/O Count batching to reduce number of trace records generated

Authors

Diwaker Gupta <diwaker.gupta@hp.com>
Rob Gardner <rob.gardner@hp.com>
Lucy Cherkasova <lucy.cherkasova.hp.com>

13

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

