Management of XEN tool

For management of XEN tool are three different systems: Xend, xm and management API.
Xend
The Xend node control daemon performs system management functions related to virtual machines. It forms a central point of control of virtualized resources, and must

be running in order to start and manage virtual machines. Xend must be run as root because it needs access to privileged system management functions.
Xend can be started on the command line as well, and supports the following set of parameters:

xend start start xend, if not already running

xend stop stop xend if already running

xend restart restart xend if running, otherwise start it

xend status indicates xend status by its return code
An HTTP interface and a Unix domain socket API are available to communicate with Xend. This allows remote users to pass commands to the daemon. By default, Xend does not start an HTTP server. It does start a Unix domain socket management server, as the low level utility xm requires it. For support of cross-machine migration, Xend can start a relocation server. This support is not enabled by default for security reasons.

Note: the example xend configuration file modifies the defaults and starts up Xend as

an HTTP server as well as a relocation server.

From the file:

#(xend-http-server no)

(xend-http-server yes)

#(xend-unix-server yes)

#(xend-relocation-server no)

(xend-relocation-server yes)

Comment or uncomment lines in that file to disable or enable features that you require.

Connections from remote hosts are disabled by default:

Address xend should listen on for HTTP connections, if xend-http-server # set.

Specifying 'localhost' prevents remote connections.

Specifying the empty string '' (the default) allows all connections.

#(xend-address '')

(xend-address localhost)

It is recommended that if migration support is not needed, the xend-relocation-server

parameter value be changed to .no. or commented out.
But this interface is a very old and totally broken HTML interface and legacy, generally working SXP-based interface, on port 8000. At this time exists two more Xend interfaces but without documentation:

· xend-unix-xmlrpc-server: Legacy XML-RPC server, over HTTP/unix, the recommended way to access Xend in 3.0.4.

· xend-tcp-xmlrpc-server: Ditto, over TCP, on port 8006.

Xm
The xm tool is the primary tool for managing Xen from the console. The general

format of an xm command line is:

xm command [switches] [arguments] [variables]
The available switches and arguments are dependent on the command chosen. The

variables may be set using declarations of the form variable=value and command

line declarations override any of the values in the con_guration _le being used,

including the standard variables described above and any custom variables (for instance, the xmdefconfig _le uses a vmid variable).
Xen-Management-API
The Xen Management API is an interface for remotely configuring and controlling virtualised guests running on a Xen-enabled host.
The API is presented here as a set of Remote Procedure Calls, with a wire format based upon XML-RPC. No specific language bindings are prescribed.
The API reference uses the terminology classes and objects. For our purposes a class is simply a hierarchical namespace; an object is an instance of a class with its fields set to specific values. Objects are persistent and exist on the server-side.

Clients may obtain opaque references to these server-side objects and then access their fields viaget/set RPCs.

For each class we specify a list of fields along with their types and qualifiers. A qualifier is one of:

· ROrun: the field is Read Only. Furthermore, its value is automatically computed at runtime. For example: current CPU load and disk IO throughput.

· ROins : the field must be manually set when a new object is created, but is then Read Only for the duration of the object’s life. For example, the maximum memory addressable by a guest is set before the guest boots.

· RW: the field is Read/Write. For example, the name of a VM.
The following classes are defined:

	Name
	Description

	session

task

event

VM

VM metrics

VM guest metrics

host

host metrics

host cpu

network

VIF

VIF metrics

PIF

PIF metrics

SR

VDI

VBD

VBD metrics

PBD

crashdump

VTPM

console

user

debug
	A session

A long-running asynchronous task

Asynchronous event registration and handling

A virtual machine (or ’guest’)

The metrics associated with a VM

The metrics reported by the guest (as opposed to inferred from outside)

A physical host

The metrics associated with a host

A physical CPU

A virtual network

A virtual network interface

The metrics associated with a virtual network device

A physical network interface (note separate VLANs are represented as several PIFs)

The metrics associated with a physical network interface

A storage repository

A virtual disk image

A virtual block device

The metrics associated with a virtual block device

The physical block devices through which hosts access SRs

A VM crashdump

A virtual TPM device

A console

A user of the system

A basic class for testing

With the following relations:
	object.field
	object.field
	relationship

	host.PBDs

SR.PBDs

VDI.VBDs

VDI.crash_dumps

VBD:VM

crashdump.VM

VIF.VM

VIF.network

PIF.host

PIF.network

SR.VDIs

VTPM.VM

console.VM

host.resident_VMs

host.host_CPUs
	PBD.host

PBD.SR

VBD.VDI

crashdump.VDI

VM.VBDs

VM.crash_dumps

VM.VIFs

network.VIFs

host.PIFs

network.PIFs

VDI.SR

VM.VTPMs

VM.consoles

VM.resident_on

host_cpu.host
	many-to-one

many-to-one

many-to-one

many-to-one

one-to-many

one-to-many

one-to-many

one-to-many

one-to-many

one-to-many

many-to-one

one-to-many

one-to-many

many-to-one

many-to-one

[image: image1.png]comsole | (v D)
(VM_metrics)

/\meemfs/\/

J VI

network.

VTPM

host_epu] p o VBD

N S
— YD)
SR

~
(#BD_metrics)

Also as an example it’s shown the different fields for the class VM:
	Quals
	Fields
	Type
	Description

	ROrun
	uuid
	string
	unique identifier/object reference

	ROrun
	power_state
	vm_power_state
	Current power state of the machine

	ROrun
	allowed_operations*
	(vm_operations) Set
	list of the operations allowed in this state. This list is advisory only and the server state may have changed by the time this field is read by a client

	ROrun
	current_operations*
	(string -> vm_operations) Map
	links each of the running task usijng this object (by reference) to a current_operation enum which describes the nature of the task

	RW
	name/label
	string
	a human-readable name

	RW
	name/description
	string
	a notes field containing human-readable description

	RW
	user_version
	int
	a user version number for this machine

	RW
	is_a_template
	bool
	true if this is a template. Template VMs can never be started, they are used only for cloning other VMs

	RW
	auto_power_on**
	bool
	tru if this VM should be started automatically after host boot

	ROrun
	suspend_VDI
	VDI ref
	The VDI that a suspend image is stored on. (Only has meaning if VM is currently suspended)

	ROrun
	resident_on
	host ref
	the host the VM is currently resident on

	ROrun
	scheduled_to_be_resident_on*
	host ref
	the host on which the VM is due to ber started/resumed/migrated. This acts as a memory reservation indicator

	RW
	affinity*
	host ref
	a host which the VM has some affinity for (or NULL). This is used as a hint to the start call when it decides where to run the VM. Implementations are free to ignore this field

	RW
	memory/static_max
	int
	Statically-set (i.e. absolute) maximum (bytes)

	RW
	memory/dynamic_MAX
	INT
	Dynamic maximum (bytes)

	RW
	memory/dynamic_min
	int
	Dynamic minimum (bytes)

	RW
	memory/static_min
	int
	tatically-set (i.e. absolute) minium (bytes)

	RW
	VCPUs/params
	(string->string)Map
	configuration parameters for the selected VCPU policy

	RW
	VCPUs/max
	int
	Max number of VCPUs

	RW
	VCPUs/at_startup
	int
	Boot number of VCPUs

	RW
	actions/after_shutdown
	on_normal_exit
	action to take after the guest has shutdown itself

	RW
	actions/after_reboot
	on_normal_exit
	action to take after the guest has rebooted itself

	RW
	actions/after_crash
	on_crash_behaviour
	action to take if the guest chrashes

	ROrun
	consoles
	(console ref) Set
	virtual console devices

	ROrun
	VIFs
	(VIF ref) Set
	virtual network interfaces

	ROrun
	VBDs
	(VBD ref) Set
	virtual block devices

	ROrun
	crash_dumps
	(crashdump ref) Set
	crash dumps associated with this VM

	ROrun
	VTPMs
	(VTPM ref) Set
	crash dumps associated with this VM

	ROrun
	VTPMs
	(VTPM ref) Set
	virtual TPMs

	RW
	PV/bootloader
	string
	name of or path to bootloader

	RW
	PV/kernel
	string
	path to the kernel

	RW
	PV/kernel
	string
	path to the kernel

	RW
	PV/ramdisk
	string
	path to the initrd

	RW
	PV/args
	string
	kernel c ommand-line arguments

	RW
	PV/bootloader_args
	string
	miscellaneous arguments for the bootloader

	RW
	PV/legacy_args*
	string
	to make Zurich guests boot

	RW
	HVM/boot_policy
	string
	HVM boot policy

	RW
	HVM/boot_params
	(string->string) Map
	HVM boot params

	RW
	HVM/shadow_multiplier*
	float
	multiplier applied to the amount of shadow that will be made available to the guest

	RW
	platform
	(string->string) Map
	platform-specific configuration

	RW
	PCI-bus
	string
	PCI bus path for pass-through devices

	RW
	other_config
	(string->string) Map
	additional configuration

	ROrun
	domid
	int
	domain ID (if available, 01 otherwise)

	ROrun
	domarch*
	string
	Domain architecture (if available, null string otherwise)

	ROrun
	last_boot_CPU_flags*
	(string->string) Map
	describes the CPU flags on which the VM was last booted

	ROrun
	is_control_domain
	bool
	true if this is a control domain (domain 0 or a drvier domain)

	ROrun
	metrics
	VM_metrics ref
	metrics associated with this VM

	ROrun
	guest_metrics
	VM_guest_metrics ref
	metrics associated with the running guest

	ROrun
	last_booted_record*
	string
	marshaled value containing VM record at time of last boot, updated dynamically to reflect the runtime state of the domain

	RW
	recommendations*
	string
	An XML specification of recommended values and ranges for properties of this VM

	RW
	xenstore_data*
	(string->string) Map
	data to be inserted into the xenstore tree (/local/domain/!domid¿/vm-data) after the VM is created

*Only enterprise edition
**Only community edition
For creation and start a virtual machine the next two RPC operations have to be called:
RPC name: create
Overview: Create a new VM instance, and return its handle.

Signature:

(VM ref) create (session_id s, VM record args)

Arguments:
	type
	name
	description

	VM record
	args
	All constructor arguments

Return Type: VM ref

reference to the newly created object

RPC name: start
Overview: Start the specified VM. This function can only be called with the VM is in the Halted State.

Signature:

void start (session_id s, VM ref vm, bool start_paused, bool force)

Arguments:
	type
	name
	description

	VM ref
	vm
	The VM to start

	bool
	start_paused
	Instantiate VM in paused state if set to true

	bool
	force
	Attempt to force the VM to start. If this flag is false then the VM may fail pre-boot safety checks (e.g. if the CPU the VM last booted on looks substantially different to the current one)

Return Type: void

Possible Error Codes: VM BAD POWER STATE, VM HVM REQUIRED, VM IS TEMPLATE, OTHER OPERATION IN PROGRESS, OPERATION NOT ALLOWED, BOOTLOADER FAILED, UNKNOWN BOOTLOADER, NO HOSTS AVAILABLE, LICENCE RESTRICTION

Finally a VM has the next states in the API calls:

[image: image2.png]powered down

start(paused=true)

leanShutdown

paused tart(paused=false) hardShutdown

resume pause

suspend [resume(paused=true) | running

suspend / resume(paused=false)

suspended

Conclusions

Summarizing:

· xm: primary tool for managing Xen from the console.
· xend-http-server: Very old and totally broken HTML interface and legacy, generally working SXP-based interface, on port 8000.

· xend-unix-server: Ditto, using a unix domain socket.

· xend-unix-xmlrpc-server: Legacy XML-RPC server, over HTTP/unix, the recommended way to access Xend in 3.0.4.

· xend-tcp-xmlrpc-server: Ditto, over TCP, on port 8006.

· xen-management-api: All new, all shiny Xen-API interface, available in preview form now, and landing for 3.0.5.

So for Federica project the three important interfaces are:

1. xend-unix-xmlrpc-server: this is the recommended way to access Xend.

2. xend-tcp-xmlrpc-server: another way to acces Xend by tcp port.
3. xen-management-api: a new API for remote management of the Xen tool based on XML-RPC.
At that moment not too much information is on the net for the xend xmlrpc interfaces. For the management API are defined two documents, one for the enterprise edition and another one for the community edition. Anyway, all these interfaces haven’t examples on the net, only some bindings for the management API.

Also at that moment none of these interfaces is using the standard CIM. It is supposed to be included in the next versions of the XEN management API.

Bibliography
XenEnterpriseManagementInterface: http://community.citrix.com/download/attachments/17596457/xenenterpriseapi4_1.pdf?version=1
XenManagementInterface:

http://wiki.xensource.com/xenwiki/XenApi?action=AttachFile&do=get&target=xenapi-1.0.0.pdf
Xen Summmit API Slides:

http://wiki.xensource.com/xenwiki/XenApi?action=AttachFile&do=get&target=Xen+Summit+API+Slides+2007-04-18.pdf
Xen Manual:

http://bits.xensource.com/Xen/docs/user.pdf
